X-Git-Url: https://sigrok.org/gitweb/?a=blobdiff_plain;f=src%2Fhardware%2Fasix-sigma%2Fprotocol.c;h=3a653939f7a11c4f44a2ccee951933e341a88c9f;hb=3d9373af2ecfb4c2f74b68ad828617fd02519ca6;hp=ee15bb0daacda9974e21aadb682e10809cc186ae;hpb=5c231fc466fac5da4b24f79a29af7a3fa0a10f76;p=libsigrok.git diff --git a/src/hardware/asix-sigma/protocol.c b/src/hardware/asix-sigma/protocol.c index ee15bb0d..3a653939 100644 --- a/src/hardware/asix-sigma/protocol.c +++ b/src/hardware/asix-sigma/protocol.c @@ -37,7 +37,7 @@ * few discrete values, while setter routines accept any user specified * rate that is supported by the hardware. */ -SR_PRIV const uint64_t samplerates[] = { +static const uint64_t samplerates[] = { /* 50MHz and integer divider. 1/2/5 steps (where possible). */ SR_KHZ(200), SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(5), @@ -46,7 +46,10 @@ SR_PRIV const uint64_t samplerates[] = { SR_MHZ(100), SR_MHZ(200), }; -SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates); +SR_PRIV GVariant *sigma_get_samplerates_list(void) +{ + return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates)); +} static const char *firmware_files[] = { [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */ @@ -58,62 +61,223 @@ static const char *firmware_files[] = { #define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024) -static int sigma_read(struct dev_context *devc, void *buf, size_t size) +static int sigma_ftdi_open(const struct sr_dev_inst *sdi) +{ + struct dev_context *devc; + int vid, pid; + const char *serno; + int ret; + + devc = sdi->priv; + if (!devc) + return SR_ERR_ARG; + + if (devc->ftdi.is_open) + return SR_OK; + + vid = devc->id.vid; + pid = devc->id.pid; + serno = sdi->serial_num; + if (!vid || !pid || !serno || !*serno) + return SR_ERR_ARG; + + ret = ftdi_init(&devc->ftdi.ctx); + if (ret < 0) { + sr_err("Cannot initialize FTDI context (%d): %s.", + ret, ftdi_get_error_string(&devc->ftdi.ctx)); + return SR_ERR_IO; + } + ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx, + vid, pid, NULL, serno, 0); + if (ret < 0) { + sr_err("Cannot open device (%d): %s.", + ret, ftdi_get_error_string(&devc->ftdi.ctx)); + return SR_ERR_IO; + } + devc->ftdi.is_open = TRUE; + + return SR_OK; +} + +static int sigma_ftdi_close(struct dev_context *devc) +{ + int ret; + + ret = ftdi_usb_close(&devc->ftdi.ctx); + devc->ftdi.is_open = FALSE; + devc->ftdi.must_close = FALSE; + ftdi_deinit(&devc->ftdi.ctx); + + return ret == 0 ? SR_OK : SR_ERR_IO; +} + +SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi) +{ + struct dev_context *devc; + int ret; + + if (!sdi) + return SR_ERR_ARG; + devc = sdi->priv; + if (!devc) + return SR_ERR_ARG; + + if (devc->ftdi.is_open) + return SR_OK; + + ret = sigma_ftdi_open(sdi); + if (ret != SR_OK) + return ret; + devc->ftdi.must_close = TRUE; + + return ret; +} + +SR_PRIV int sigma_check_close(struct dev_context *devc) +{ + int ret; + + if (!devc) + return SR_ERR_ARG; + + if (devc->ftdi.must_close) { + ret = sigma_ftdi_close(devc); + if (ret != SR_OK) + return ret; + devc->ftdi.must_close = FALSE; + } + + return SR_OK; +} + +SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi) +{ + struct dev_context *devc; + int ret; + + if (!sdi) + return SR_ERR_ARG; + devc = sdi->priv; + if (!devc) + return SR_ERR_ARG; + + ret = sigma_ftdi_open(sdi); + if (ret != SR_OK) + return ret; + devc->ftdi.must_close = FALSE; + + return SR_OK; +} + +SR_PRIV int sigma_force_close(struct dev_context *devc) +{ + return sigma_ftdi_close(devc); +} + +/* + * BEWARE! Error propagation is important, as are kinds of return values. + * + * - Raw USB tranport communicates the number of sent or received bytes, + * or negative error codes in the external library's(!) range of codes. + * - Internal routines at the "sigrok driver level" communicate success + * or failure in terms of SR_OK et al error codes. + * - Main loop style receive callbacks communicate booleans which arrange + * for repeated calls to drive progress during acquisition. + * + * Careful consideration by maintainers is essential, because all of the + * above kinds of values are assignment compatbile from the compiler's + * point of view. Implementation errors will go unnoticed at build time. + */ + +static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size) { int ret; - ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size); + ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size); if (ret < 0) { - sr_err("ftdi_read_data failed: %s", - ftdi_get_error_string(&devc->ftdic)); + sr_err("USB data read failed: %s", + ftdi_get_error_string(&devc->ftdi.ctx)); } return ret; } -static int sigma_write(struct dev_context *devc, const void *buf, size_t size) +static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size) { int ret; - ret = ftdi_write_data(&devc->ftdic, buf, size); - if (ret < 0) - sr_err("ftdi_write_data failed: %s", - ftdi_get_error_string(&devc->ftdic)); - else if ((size_t) ret != size) - sr_err("ftdi_write_data did not complete write."); + ret = ftdi_write_data(&devc->ftdi.ctx, buf, size); + if (ret < 0) { + sr_err("USB data write failed: %s", + ftdi_get_error_string(&devc->ftdi.ctx)); + } else if ((size_t)ret != size) { + sr_err("USB data write length mismatch."); + } return ret; } +static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size) +{ + int ret; + + ret = sigma_read_raw(devc, buf, size); + if (ret < 0 || (size_t)ret != size) + return SR_ERR_IO; + + return SR_OK; +} + +static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size) +{ + int ret; + + ret = sigma_write_raw(devc, buf, size); + if (ret < 0 || (size_t)ret != size) + return SR_ERR_IO; + + return SR_OK; +} + /* - * NOTE: We chose the buffer size to be large enough to hold any write to the - * device. We still print a message just in case. + * Implementor's note: The local write buffer's size shall suffice for + * any know FPGA register transaction that is involved in the supported + * feature set of this sigrok device driver. If the length check trips, + * that's a programmer's error and needs adjustment in the complete call + * stack of the respective code path. */ +#define SIGMA_MAX_REG_DEPTH 32 + +/* + * Implementor's note: The FPGA command set supports register access + * with automatic address adjustment. This operation is documented to + * wrap within a 16-address range, it cannot cross boundaries where the + * register address' nibble overflows. An internal helper assumes that + * callers remain within this auto-adjustment range, and thus multi + * register access requests can never exceed that count. + */ +#define SIGMA_MAX_REG_COUNT 16 + SR_PRIV int sigma_write_register(struct dev_context *devc, uint8_t reg, uint8_t *data, size_t len) { - uint8_t buf[80], *wrptr; - size_t idx, count; - int ret; + uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr; + size_t idx; - if (2 + 2 * len > sizeof(buf)) { - sr_err("Write buffer too small to write %zu bytes.", len); + if (len > SIGMA_MAX_REG_DEPTH) { + sr_err("Short write buffer for %zu bytes to reg %u.", len, reg); return SR_ERR_BUG; } wrptr = buf; - write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf)); - write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4)); + write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg)); + write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg)); for (idx = 0; idx < len; idx++) { - write_u8_inc(&wrptr, REG_DATA_LOW | (data[idx] & 0xf)); - write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data[idx] >> 4)); + write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx])); + write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx])); } - count = wrptr - buf; - ret = sigma_write(devc, buf, count); - if (ret != SR_OK) - return ret; - return SR_OK; + return sigma_write_sr(devc, buf, wrptr - buf); } SR_PRIV int sigma_set_register(struct dev_context *devc, @@ -126,41 +290,77 @@ static int sigma_read_register(struct dev_context *devc, uint8_t reg, uint8_t *data, size_t len) { uint8_t buf[3], *wrptr; + int ret; wrptr = buf; - write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf)); - write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4)); + write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg)); + write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg)); write_u8_inc(&wrptr, REG_READ_ADDR); - sigma_write(devc, buf, wrptr - buf); + ret = sigma_write_sr(devc, buf, wrptr - buf); + if (ret != SR_OK) + return ret; + + return sigma_read_sr(devc, data, len); +} + +static int sigma_get_register(struct dev_context *devc, + uint8_t reg, uint8_t *data) +{ + return sigma_read_register(devc, reg, data, sizeof(*data)); +} + +static int sigma_get_registers(struct dev_context *devc, + uint8_t reg, uint8_t *data, size_t count) +{ + uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr; + size_t idx; + int ret; - return sigma_read(devc, data, len); + if (count > SIGMA_MAX_REG_COUNT) { + sr_err("Short command buffer for %zu reg reads at %u.", count, reg); + return SR_ERR_BUG; + } + + wrptr = buf; + write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg)); + write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg)); + for (idx = 0; idx < count; idx++) + write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC); + ret = sigma_write_sr(devc, buf, wrptr - buf); + if (ret != SR_OK) + return ret; + + return sigma_read_sr(devc, data, count); } static int sigma_read_pos(struct dev_context *devc, - uint32_t *stoppos, uint32_t *triggerpos) + uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode) { + uint8_t result[7]; + const uint8_t *rdptr; + uint32_t v32; + uint8_t v8; + int ret; + /* - * Read 6 registers starting at trigger position LSB. - * Which yields two 24bit counter values. + * Read 7 registers starting at trigger position LSB. + * Which yields two 24bit counter values, and mode flags. */ - const uint8_t buf[] = { - REG_ADDR_LOW | READ_TRIGGER_POS_LOW, - REG_READ_ADDR | REG_ADDR_INC, - REG_READ_ADDR | REG_ADDR_INC, - REG_READ_ADDR | REG_ADDR_INC, - REG_READ_ADDR | REG_ADDR_INC, - REG_READ_ADDR | REG_ADDR_INC, - REG_READ_ADDR | REG_ADDR_INC, - }, *rdptr; - uint8_t result[6]; - - sigma_write(devc, buf, sizeof(buf)); - - sigma_read(devc, result, sizeof(result)); + ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW, + result, sizeof(result)); + if (ret != SR_OK) + return ret; rdptr = &result[0]; - *triggerpos = read_u24le_inc(&rdptr); - *stoppos = read_u24le_inc(&rdptr); + v32 = read_u24le_inc(&rdptr); + if (triggerpos) + *triggerpos = v32; + v32 = read_u24le_inc(&rdptr); + if (stoppos) + *stoppos = v32; + v8 = read_u8_inc(&rdptr); + if (mode) + *mode = v8; /* * These positions consist of "the memory row" in the MSB fields, @@ -173,32 +373,33 @@ static int sigma_read_pos(struct dev_context *devc, * cater for the timestamps when the decrement carries over to * a different memory row. */ - if ((--*stoppos & ROW_MASK) == ROW_MASK) + if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK) *stoppos -= CLUSTERS_PER_ROW; - if ((--*triggerpos & ROW_MASK) == ROW_MASK) + if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK) *triggerpos -= CLUSTERS_PER_ROW; return SR_OK; } static int sigma_read_dram(struct dev_context *devc, - uint16_t startchunk, size_t numchunks, uint8_t *data) + size_t startchunk, size_t numchunks, uint8_t *data) { - uint8_t buf[128], *wrptr; + uint8_t buf[128], *wrptr, regval; size_t chunk; - int sel; + int sel, ret; gboolean is_last; if (2 + 3 * numchunks > ARRAY_SIZE(buf)) { - sr_err("Read buffer too small to read %zu DRAM rows", numchunks); + sr_err("Short write buffer for %zu DRAM row reads.", numchunks); return SR_ERR_BUG; } /* Communicate DRAM start address (memory row, aka samples line). */ wrptr = buf; - write_u8_inc(&wrptr, startchunk >> 8); - write_u8_inc(&wrptr, startchunk & 0xff); - sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf); + write_u16be_inc(&wrptr, startchunk); + ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf); + if (ret != SR_OK) + return ret; /* * Access DRAM content. Fetch from DRAM to FPGA's internal RAM, @@ -211,93 +412,121 @@ static int sigma_read_dram(struct dev_context *devc, for (chunk = 0; chunk < numchunks; chunk++) { sel = chunk % 2; is_last = chunk == numchunks - 1; - if (!is_last) - write_u8_inc(&wrptr, REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel)); - write_u8_inc(&wrptr, REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel)); + if (!is_last) { + regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel); + write_u8_inc(&wrptr, regval); + } + regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel); + write_u8_inc(&wrptr, regval); if (!is_last) write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK); } - sigma_write(devc, buf, wrptr - buf); + ret = sigma_write_sr(devc, buf, wrptr - buf); + if (ret != SR_OK) + return ret; - return sigma_read(devc, data, numchunks * ROW_LENGTH_BYTES); + return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES); } /* Upload trigger look-up tables to Sigma. */ SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc, struct triggerlut *lut) { - int i; - uint8_t tmp[2]; + size_t lut_addr; uint16_t bit; - uint8_t buf[6], *wrptr, regval; + uint8_t m3d, m2d, m1d, m0d; + uint8_t buf[6], *wrptr, v8; + uint16_t selreg; + int ret; - /* Transpose the table and send to Sigma. */ - for (i = 0; i < 16; i++) { - bit = 1 << i; + /* + * Translate the LUT part of the trigger configuration from the + * application's perspective to the hardware register's bitfield + * layout. Send the LUT to the device. This configures the logic + * which combines pin levels or edges. + */ + for (lut_addr = 0; lut_addr < 16; lut_addr++) { + bit = 1 << lut_addr; - tmp[0] = tmp[1] = 0; + /* - M4 M3S M3Q */ + m3d = 0; + if (lut->m4 & bit) + m3d |= 1 << 2; + if (lut->m3s & bit) + m3d |= 1 << 1; + if (lut->m3q & bit) + m3d |= 1 << 0; - if (lut->m2d[0] & bit) - tmp[0] |= 0x01; - if (lut->m2d[1] & bit) - tmp[0] |= 0x02; - if (lut->m2d[2] & bit) - tmp[0] |= 0x04; + /* M2D3 M2D2 M2D1 M2D0 */ + m2d = 0; if (lut->m2d[3] & bit) - tmp[0] |= 0x08; + m2d |= 1 << 3; + if (lut->m2d[2] & bit) + m2d |= 1 << 2; + if (lut->m2d[1] & bit) + m2d |= 1 << 1; + if (lut->m2d[0] & bit) + m2d |= 1 << 0; - if (lut->m3 & bit) - tmp[0] |= 0x10; - if (lut->m3s & bit) - tmp[0] |= 0x20; - if (lut->m4 & bit) - tmp[0] |= 0x40; + /* M1D3 M1D2 M1D1 M1D0 */ + m1d = 0; + if (lut->m1d[3] & bit) + m1d |= 1 << 3; + if (lut->m1d[2] & bit) + m1d |= 1 << 2; + if (lut->m1d[1] & bit) + m1d |= 1 << 1; + if (lut->m1d[0] & bit) + m1d |= 1 << 0; - if (lut->m0d[0] & bit) - tmp[1] |= 0x01; - if (lut->m0d[1] & bit) - tmp[1] |= 0x02; - if (lut->m0d[2] & bit) - tmp[1] |= 0x04; + /* M0D3 M0D2 M0D1 M0D0 */ + m0d = 0; if (lut->m0d[3] & bit) - tmp[1] |= 0x08; - - if (lut->m1d[0] & bit) - tmp[1] |= 0x10; - if (lut->m1d[1] & bit) - tmp[1] |= 0x20; - if (lut->m1d[2] & bit) - tmp[1] |= 0x40; - if (lut->m1d[3] & bit) - tmp[1] |= 0x80; + m0d |= 1 << 3; + if (lut->m0d[2] & bit) + m0d |= 1 << 2; + if (lut->m0d[1] & bit) + m0d |= 1 << 1; + if (lut->m0d[0] & bit) + m0d |= 1 << 0; /* - * This logic seems redundant, but separates the value - * determination from the wire format, and is useful - * during future maintenance and research. + * Send 16bits with M3D/M2D and M1D/M0D bit masks to the + * TriggerSelect register, then strobe the LUT write by + * passing A3-A0 to TriggerSelect2. Hold RESET during LUT + * programming. */ wrptr = buf; - write_u8_inc(&wrptr, tmp[0]); - write_u8_inc(&wrptr, tmp[1]); - sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf); - sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x30 | i); + write_u8_inc(&wrptr, (m3d << 4) | (m2d << 0)); + write_u8_inc(&wrptr, (m1d << 4) | (m0d << 0)); + ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, + buf, wrptr - buf); + if (ret != SR_OK) + return ret; + v8 = TRGSEL2_RESET | TRGSEL2_LUT_WRITE | + (lut_addr & TRGSEL2_LUT_ADDR_MASK); + ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, v8); + if (ret != SR_OK) + return ret; } - /* Send the parameters */ + /* + * Send the parameters. This covers counters and durations. + */ wrptr = buf; - regval = 0; - regval |= lut->params.selc << 6; - regval |= lut->params.selpresc << 0; - write_u8_inc(&wrptr, regval); - regval = 0; - regval |= lut->params.selinc << 6; - regval |= lut->params.selres << 4; - regval |= lut->params.sela << 2; - regval |= lut->params.selb << 0; - write_u8_inc(&wrptr, regval); - write_u16le_inc(&wrptr, lut->params.cmpb); - write_u16le_inc(&wrptr, lut->params.cmpa); - sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf); + selreg = 0; + selreg |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT; + selreg |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT; + selreg |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT; + selreg |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT; + selreg |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT; + selreg |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT; + write_u16be_inc(&wrptr, selreg); + write_u16be_inc(&wrptr, lut->params.cmpb); + write_u16be_inc(&wrptr, lut->params.cmpa); + ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf); + if (ret != SR_OK) + return ret; return SR_OK; } @@ -372,30 +601,48 @@ static int sigma_fpga_init_bitbang_once(struct dev_context *devc) BB_PIN_CCLK, BB_PIN_CCLK, }; - int retries, ret; + size_t retries; + int ret; uint8_t data; /* Section 2. part 1), do the FPGA suicide. */ - sigma_write(devc, suicide, sizeof(suicide)); - sigma_write(devc, suicide, sizeof(suicide)); - sigma_write(devc, suicide, sizeof(suicide)); - sigma_write(devc, suicide, sizeof(suicide)); + ret = SR_OK; + ret |= sigma_write_sr(devc, suicide, sizeof(suicide)); + ret |= sigma_write_sr(devc, suicide, sizeof(suicide)); + ret |= sigma_write_sr(devc, suicide, sizeof(suicide)); + ret |= sigma_write_sr(devc, suicide, sizeof(suicide)); + if (ret != SR_OK) + return SR_ERR_IO; g_usleep(10 * 1000); /* Section 2. part 2), pulse PROG. */ - sigma_write(devc, init_array, sizeof(init_array)); + ret = sigma_write_sr(devc, init_array, sizeof(init_array)); + if (ret != SR_OK) + return ret; g_usleep(10 * 1000); - ftdi_usb_purge_buffers(&devc->ftdic); + ftdi_usb_purge_buffers(&devc->ftdi.ctx); - /* Wait until the FPGA asserts INIT_B. */ + /* + * Wait until the FPGA asserts INIT_B. Check in a maximum number + * of bursts with a given delay between them. Read as many pin + * capture results as the combination of FTDI chip and FTID lib + * may provide. Cope with absence of pin capture data in a cycle. + * This approach shall result in fast reponse in case of success, + * low cost of execution during wait, reliable error handling in + * the transport layer, and robust response to failure or absence + * of result data (hardware inactivity after stimulus). + */ retries = 10; while (retries--) { - ret = sigma_read(devc, &data, sizeof(data)); - if (ret < 0) - return ret; - if (data & BB_PIN_INIT) - return SR_OK; - g_usleep(10 * 1000); + do { + ret = sigma_read_raw(devc, &data, sizeof(data)); + if (ret < 0) + return SR_ERR_IO; + if (ret == sizeof(data) && (data & BB_PIN_INIT)) + return SR_OK; + } while (ret == sizeof(data)); + if (retries) + g_usleep(10 * 1000); } return SR_ERR_TIMEOUT; @@ -427,7 +674,7 @@ static int sigma_fpga_init_bitbang(struct dev_context *devc) */ static int sigma_fpga_init_la(struct dev_context *devc) { - uint8_t buf[16], *wrptr; + uint8_t buf[20], *wrptr; uint8_t data_55, data_aa, mode; uint8_t result[3]; const uint8_t *rdptr; @@ -436,38 +683,45 @@ static int sigma_fpga_init_la(struct dev_context *devc) wrptr = buf; /* Read ID register. */ - write_u8_inc(&wrptr, REG_ADDR_LOW | (READ_ID & 0xf)); - write_u8_inc(&wrptr, REG_ADDR_HIGH | (READ_ID >> 4)); + write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID)); + write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID)); write_u8_inc(&wrptr, REG_READ_ADDR); /* Write 0x55 to scratch register, read back. */ data_55 = 0x55; - write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf)); - write_u8_inc(&wrptr, REG_DATA_LOW | (data_55 & 0xf)); - write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_55 >> 4)); + write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST)); + write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST)); + write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55)); + write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55)); write_u8_inc(&wrptr, REG_READ_ADDR); /* Write 0xaa to scratch register, read back. */ data_aa = 0xaa; - write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf)); - write_u8_inc(&wrptr, REG_DATA_LOW | (data_aa & 0xf)); - write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_aa >> 4)); + write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST)); + write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST)); + write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa)); + write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa)); write_u8_inc(&wrptr, REG_READ_ADDR); /* Initiate SDRAM initialization in mode register. */ mode = WMR_SDRAMINIT; - write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_MODE & 0xf)); - write_u8_inc(&wrptr, REG_DATA_LOW | (mode & 0xf)); - write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (mode >> 4)); + write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE)); + write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE)); + write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode)); + write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode)); /* * Send the command sequence which contains 3 READ requests. * Expect to see the corresponding 3 response bytes. */ - sigma_write(devc, buf, wrptr - buf); - ret = sigma_read(devc, result, ARRAY_SIZE(result)); - if (ret != ARRAY_SIZE(result)) { - sr_err("Insufficient start response length."); + ret = sigma_write_sr(devc, buf, wrptr - buf); + if (ret != SR_OK) { + sr_err("Could not request LA start response."); + return ret; + } + ret = sigma_read_sr(devc, result, ARRAY_SIZE(result)); + if (ret != SR_OK) { + sr_err("Could not receive LA start response."); return SR_ERR_IO; } rdptr = result; @@ -493,7 +747,7 @@ static int sigma_fpga_init_la(struct dev_context *devc) * by the caller of this function. */ static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name, - uint8_t **bb_cmd, gsize *bb_cmd_size) + uint8_t **bb_cmd, size_t *bb_cmd_size) { uint8_t *firmware; size_t file_size; @@ -536,7 +790,7 @@ static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name, bb_size = file_size * 8 * 2; bb_stream = g_try_malloc(bb_size); if (!bb_stream) { - sr_err("%s: Failed to allocate bitbang stream", __func__); + sr_err("Memory allocation failed during firmware upload."); g_free(firmware); return SR_ERR_MALLOC; } @@ -587,52 +841,59 @@ static int upload_firmware(struct sr_context *ctx, struct dev_context *devc, devc->state.state = SIGMA_CONFIG; /* Set the cable to bitbang mode. */ - ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG); + ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG); if (ret < 0) { - sr_err("ftdi_set_bitmode failed: %s", - ftdi_get_error_string(&devc->ftdic)); + sr_err("Could not setup cable mode for upload: %s", + ftdi_get_error_string(&devc->ftdi.ctx)); return SR_ERR; } - ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE); + ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE); if (ret < 0) { - sr_err("ftdi_set_baudrate failed: %s", - ftdi_get_error_string(&devc->ftdic)); + sr_err("Could not setup bitrate for upload: %s", + ftdi_get_error_string(&devc->ftdi.ctx)); return SR_ERR; } /* Initiate FPGA configuration mode. */ ret = sigma_fpga_init_bitbang(devc); - if (ret) + if (ret) { + sr_err("Could not initiate firmware upload to hardware"); return ret; + } /* Prepare wire format of the firmware image. */ ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size); if (ret != SR_OK) { - sr_err("Could not prepare file %s for download.", firmware); + sr_err("Could not prepare file %s for upload.", firmware); return ret; } /* Write the FPGA netlist to the cable. */ sr_info("Uploading firmware file '%s'.", firmware); - sigma_write(devc, buf, buf_size); - + ret = sigma_write_sr(devc, buf, buf_size); g_free(buf); + if (ret != SR_OK) { + sr_err("Could not upload firmware file '%s'.", firmware); + return ret; + } /* Leave bitbang mode and discard pending input data. */ - ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET); + ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET); if (ret < 0) { - sr_err("ftdi_set_bitmode failed: %s", - ftdi_get_error_string(&devc->ftdic)); + sr_err("Could not setup cable mode after upload: %s", + ftdi_get_error_string(&devc->ftdi.ctx)); return SR_ERR; } - ftdi_usb_purge_buffers(&devc->ftdic); - while (sigma_read(devc, &pins, sizeof(pins)) > 0) + ftdi_usb_purge_buffers(&devc->ftdi.ctx); + while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0) ; /* Initialize the FPGA for logic-analyzer mode. */ ret = sigma_fpga_init_la(devc); - if (ret != SR_OK) + if (ret != SR_OK) { + sr_err("Hardware response after firmware upload failed."); return ret; + } /* Keep track of successful firmware download completion. */ devc->state.state = SIGMA_IDLE; @@ -683,7 +944,7 @@ SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc) g_variant_unref(data); count_msecs = 0; if (user_count) - count_msecs = 1000 * user_count / devc->samplerate + 1; + count_msecs = 1000 * user_count / devc->clock.samplerate + 1; /* Get time limit, which is in msecs. */ ret = sr_sw_limits_config_get(&devc->cfg_limits, @@ -703,7 +964,7 @@ SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc) return SR_OK; /* Add some slack, and use that timeout for acquisition. */ - worst_cluster_time_ms = 1000 * 65536 / devc->samplerate; + worst_cluster_time_ms = 1000 * 65536 / devc->clock.samplerate; acquire_msecs += 2 * worst_cluster_time_ms; data = g_variant_new_uint64(acquire_msecs); ret = sr_sw_limits_config_set(&devc->acq_limits, @@ -754,19 +1015,66 @@ SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate) return SR_ERR_ARG; } +/* Gets called at probe time. Can seed software settings from hardware state. */ +SR_PRIV int sigma_fetch_hw_config(const struct sr_dev_inst *sdi) +{ + struct dev_context *devc; + int ret; + uint8_t regaddr, regval; + + devc = sdi->priv; + if (!devc) + return SR_ERR_ARG; + + /* Seed configuration values from defaults. */ + devc->firmware_idx = SIGMA_FW_NONE; + devc->clock.samplerate = samplerates[0]; + + /* TODO + * Ideally the device driver could retrieve recently stored + * details from hardware registers, thus re-use user specified + * configuration values across sigrok sessions. Which could + * avoid repeated expensive though unnecessary firmware uploads, + * improve performance and usability. Unfortunately it appears + * that the registers range which is documented as available for + * application use keeps providing 0xff data content. At least + * with the netlist version which ships with sigrok. The same + * was observed with unused registers in the first page. + */ + return SR_ERR_NA; + + /* This is for research, currently does not work yet. */ + ret = sigma_check_open(sdi); + regaddr = 16; + regaddr = 14; + ret = sigma_set_register(devc, regaddr, 'F'); + ret = sigma_get_register(devc, regaddr, ®val); + sr_warn("%s() reg[%u] val[%u] rc[%d]", __func__, regaddr, regval, ret); + ret = sigma_check_close(devc); + return ret; +} + +/* Gets called after successful (volatile) hardware configuration. */ +SR_PRIV int sigma_store_hw_config(const struct sr_dev_inst *sdi) +{ + /* TODO See above, registers seem to not hold written data. */ + (void)sdi; + return SR_ERR_NA; +} + SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct drv_context *drvc; uint64_t samplerate; int ret; - int num_channels; + size_t num_channels; devc = sdi->priv; drvc = sdi->driver->context; /* Accept any caller specified rate which the hardware supports. */ - ret = sigma_normalize_samplerate(devc->samplerate, &samplerate); + ret = sigma_normalize_samplerate(devc->clock.samplerate, &samplerate); if (ret != SR_OK) return ret; @@ -797,6 +1105,14 @@ SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi) devc->samples_per_event = 16 / devc->num_channels; } + /* + * Store the firmware type and most recently configured samplerate + * in hardware, such that subsequent sessions can start from there. + * This is a "best effort" approach. Failure is non-fatal. + */ + if (ret == SR_OK) + (void)sigma_store_hw_config(sdi); + return ret; } @@ -973,7 +1289,8 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi) struct sr_trigger_stage *stage; struct sr_trigger_match *match; const GSList *l, *m; - int channelbit, trigger_set; + uint16_t channelbit; + size_t trigger_set; devc = sdi->priv; memset(&devc->trigger, 0, sizeof(devc->trigger)); @@ -990,11 +1307,10 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi) if (!match->channel->enabled) continue; channelbit = 1 << match->channel->index; - if (devc->samplerate >= SR_MHZ(100)) { + if (devc->clock.samplerate >= SR_MHZ(100)) { /* Fast trigger support. */ if (trigger_set) { - sr_err("Only a single pin trigger is " - "supported in 100 and 200MHz mode."); + sr_err("100/200MHz modes limited to single trigger pin."); return SR_ERR; } if (match->match == SR_TRIGGER_FALLING) { @@ -1002,8 +1318,7 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi) } else if (match->match == SR_TRIGGER_RISING) { devc->trigger.risingmask |= channelbit; } else { - sr_err("Only rising/falling trigger is " - "supported in 100 and 200MHz mode."); + sr_err("100/200MHz modes limited to edge trigger."); return SR_ERR; } @@ -1030,7 +1345,7 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi) * does not permit ORed triggers. */ if (trigger_set > 1) { - sr_err("Only 1 rising/falling trigger is supported."); + sr_err("Limited to 1 edge trigger."); return SR_ERR; } } @@ -1045,7 +1360,7 @@ static int get_trigger_offset(uint8_t *samples, uint16_t last_sample, struct sigma_trigger *t) { const uint8_t *rdptr; - int i; + size_t i; uint16_t sample; rdptr = samples; @@ -1180,7 +1495,8 @@ static void sigma_decode_dram_cluster(struct dev_context *devc, { struct sigma_state *ss; uint16_t tsdiff, ts, sample, item16; - unsigned int i; + size_t count; + size_t evt; if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER) triggered = FALSE; @@ -1199,7 +1515,6 @@ static void sigma_decode_dram_cluster(struct dev_context *devc, ts = sigma_dram_cluster_ts(dram_cluster); tsdiff = ts - ss->lastts; if (tsdiff > 0) { - size_t count; sample = ss->lastsample; count = tsdiff * devc->samples_per_event; (void)check_and_submit_sample(devc, sample, count, FALSE); @@ -1214,9 +1529,9 @@ static void sigma_decode_dram_cluster(struct dev_context *devc, * buffer depth is neither assumed nor required here. */ sample = 0; - for (i = 0; i < events_in_cluster; i++) { - item16 = sigma_dram_cluster_data(dram_cluster, i); - if (devc->samplerate == SR_MHZ(200)) { + for (evt = 0; evt < events_in_cluster; evt++) { + item16 = sigma_dram_cluster_data(dram_cluster, evt); + if (devc->clock.samplerate == SR_MHZ(200)) { sample = sigma_deinterlace_200mhz_data(item16, 0); check_and_submit_sample(devc, sample, 1, triggered); sample = sigma_deinterlace_200mhz_data(item16, 1); @@ -1225,7 +1540,7 @@ static void sigma_decode_dram_cluster(struct dev_context *devc, check_and_submit_sample(devc, sample, 1, triggered); sample = sigma_deinterlace_200mhz_data(item16, 3); check_and_submit_sample(devc, sample, 1, triggered); - } else if (devc->samplerate == SR_MHZ(100)) { + } else if (devc->clock.samplerate == SR_MHZ(100)) { sample = sigma_deinterlace_100mhz_data(item16, 0); check_and_submit_sample(devc, sample, 1, triggered); sample = sigma_deinterlace_100mhz_data(item16, 1); @@ -1252,19 +1567,19 @@ static int decode_chunk_ts(struct dev_context *devc, size_t events_in_line, size_t trigger_event) { struct sigma_dram_cluster *dram_cluster; - unsigned int clusters_in_line; - unsigned int events_in_cluster; - unsigned int i; - uint32_t trigger_cluster; + size_t clusters_in_line; + size_t events_in_cluster; + size_t cluster; + size_t trigger_cluster; clusters_in_line = events_in_line; clusters_in_line += EVENTS_PER_CLUSTER - 1; clusters_in_line /= EVENTS_PER_CLUSTER; - trigger_cluster = ~0; /* Check if trigger is in this chunk. */ + trigger_cluster = ~0UL; if (trigger_event < EVENTS_PER_ROW) { - if (devc->samplerate <= SR_MHZ(50)) { + if (devc->clock.samplerate <= SR_MHZ(50)) { trigger_event -= MIN(EVENTS_PER_CLUSTER - 1, trigger_event); } @@ -1274,11 +1589,11 @@ static int decode_chunk_ts(struct dev_context *devc, } /* For each full DRAM cluster. */ - for (i = 0; i < clusters_in_line; i++) { - dram_cluster = &dram_line->cluster[i]; + for (cluster = 0; cluster < clusters_in_line; cluster++) { + dram_cluster = &dram_line->cluster[cluster]; /* The last cluster might not be full. */ - if ((i == clusters_in_line - 1) && + if ((cluster == clusters_in_line - 1) && (events_in_line % EVENTS_PER_CLUSTER)) { events_in_cluster = events_in_line % EVENTS_PER_CLUSTER; } else { @@ -1286,7 +1601,7 @@ static int decode_chunk_ts(struct dev_context *devc, } sigma_decode_dram_cluster(devc, dram_cluster, - events_in_cluster, i == trigger_cluster); + events_in_cluster, cluster == trigger_cluster); } return SR_OK; @@ -1298,14 +1613,13 @@ static int download_capture(struct sr_dev_inst *sdi) struct dev_context *devc; struct sigma_dram_line *dram_line; - int bufsz; uint32_t stoppos, triggerpos; uint8_t modestatus; - uint32_t i; - uint32_t dl_lines_total, dl_lines_curr, dl_lines_done; - uint32_t dl_first_line, dl_line; - uint32_t dl_events_in_line, trigger_event; - uint32_t trg_line, trg_event; + size_t line_idx; + size_t dl_lines_total, dl_lines_curr, dl_lines_done; + size_t dl_first_line, dl_line; + size_t dl_events_in_line, trigger_event; + size_t trg_line, trg_event; int ret; devc = sdi->priv; @@ -1319,31 +1633,31 @@ static int download_capture(struct sr_dev_inst *sdi) * clusters to DRAM regardless of whether pin state changes) and * raise the POSTTRIGGERED flag. */ - sigma_set_register(devc, WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN); + modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN; + ret = sigma_set_register(devc, WRITE_MODE, modestatus); + if (ret != SR_OK) + return ret; do { - ret = sigma_read_register(devc, READ_MODE, - &modestatus, sizeof(modestatus)); - if (ret != sizeof(modestatus)) { - sr_err("Could not poll for post-trigger condition."); + ret = sigma_get_register(devc, READ_MODE, &modestatus); + if (ret != SR_OK) { + sr_err("Could not poll for post-trigger state."); return FALSE; } } while (!(modestatus & RMR_POSTTRIGGERED)); /* Set SDRAM Read Enable. */ - sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN); - - /* Get the current position. */ - sigma_read_pos(devc, &stoppos, &triggerpos); + ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN); + if (ret != SR_OK) + return ret; - /* Check if trigger has fired. */ - ret = sigma_read_register(devc, READ_MODE, - &modestatus, sizeof(modestatus)); - if (ret != sizeof(modestatus)) { - sr_err("Could not query trigger hit."); + /* Get the current position. Check if trigger has fired. */ + ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus); + if (ret != SR_OK) { + sr_err("Could not query capture positions/state."); return FALSE; } - trg_line = ~0; - trg_event = ~0; + trg_line = ~0UL; + trg_event = ~0UL; if (modestatus & RMR_TRIGGERED) { trg_line = triggerpos >> ROW_SHIFT; trg_event = triggerpos & ROW_MASK; @@ -1381,10 +1695,10 @@ static int download_capture(struct sr_dev_inst *sdi) dl_line = dl_first_line + dl_lines_done; dl_line %= ROW_COUNT; - bufsz = sigma_read_dram(devc, dl_line, dl_lines_curr, - (uint8_t *)dram_line); - /* TODO: Check bufsz. For now, just avoid compiler warnings. */ - (void)bufsz; + ret = sigma_read_dram(devc, dl_line, dl_lines_curr, + (uint8_t *)dram_line); + if (ret != SR_OK) + return FALSE; /* This is the first DRAM line, so find the initial timestamp. */ if (dl_lines_done == 0) { @@ -1393,18 +1707,18 @@ static int download_capture(struct sr_dev_inst *sdi) devc->state.lastsample = 0; } - for (i = 0; i < dl_lines_curr; i++) { + for (line_idx = 0; line_idx < dl_lines_curr; line_idx++) { /* The last "DRAM line" need not span its full length. */ dl_events_in_line = EVENTS_PER_ROW; - if (dl_lines_done + i == dl_lines_total - 1) + if (dl_lines_done + line_idx == dl_lines_total - 1) dl_events_in_line = stoppos & ROW_MASK; /* Test if the trigger happened on this line. */ - trigger_event = ~0; - if (dl_lines_done + i == trg_line) + trigger_event = ~0UL; + if (dl_lines_done + line_idx == trg_line) trigger_event = trg_event; - decode_chunk_ts(devc, dram_line + i, + decode_chunk_ts(devc, dram_line + line_idx, dl_events_in_line, trigger_event); } @@ -1467,25 +1781,42 @@ SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data) } /* Build a LUT entry used by the trigger functions. */ -static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry) +static void build_lut_entry(uint16_t *lut_entry, + uint16_t spec_value, uint16_t spec_mask) { - int i, j, k, bit; - - /* For each quad channel. */ - for (i = 0; i < 4; i++) { - entry[i] = 0xffff; - - /* For each bit in LUT. */ - for (j = 0; j < 16; j++) { - - /* For each channel in quad. */ - for (k = 0; k < 4; k++) { - bit = 1 << (i * 4 + k); + size_t quad, bitidx, ch; + uint16_t quadmask, bitmask; + gboolean spec_value_low, bit_idx_low; - /* Set bit in entry */ - if ((mask & bit) && ((!(value & bit)) != - (!(j & (1 << k))))) - entry[i] &= ~(1 << j); + /* + * For each quad-channel-group, for each bit in the LUT (each + * bit pattern of the channel signals, aka LUT address), for + * each channel in the quad, setup the bit in the LUT entry. + * + * Start from all-ones in the LUT (true, always matches), then + * "pessimize the truthness" for specified conditions. + */ + for (quad = 0; quad < 4; quad++) { + lut_entry[quad] = ~0; + for (bitidx = 0; bitidx < 16; bitidx++) { + for (ch = 0; ch < 4; ch++) { + quadmask = 1 << ch; + bitmask = quadmask << (quad * 4); + if (!(spec_mask & bitmask)) + continue; + /* + * This bit is part of the spec. The + * condition which gets checked here + * (got checked in all implementations + * so far) is uncertain. A bit position + * in the current index' number(!) is + * checked? + */ + spec_value_low = !(spec_value & bitmask); + bit_idx_low = !(bitidx & quadmask); + if (spec_value_low == bit_idx_low) + continue; + lut_entry[quad] &= ~(1 << bitidx); } } } @@ -1493,9 +1824,9 @@ static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry) /* Add a logical function to LUT mask. */ static void add_trigger_function(enum triggerop oper, enum triggerfunc func, - int index, int neg, uint16_t *mask) + size_t index, gboolean neg, uint16_t *mask) { - int i, j; + size_t i, j; int x[2][2], tmp, a, b, aset, bset, rset; memset(x, 0, sizeof(x)); @@ -1581,47 +1912,55 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func, SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc, struct triggerlut *lut) { - int i,j; uint16_t masks[2]; + size_t bitidx, condidx; + uint16_t value, mask; + /* Start assuming simple triggers. */ memset(lut, 0, sizeof(*lut)); - memset(&masks, 0, sizeof(masks)); - - /* Constant for simple triggers. */ lut->m4 = 0xa000; + lut->m3q = 0xffff; - /* Value/mask trigger support. */ - build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask, - lut->m2d); + /* Process value/mask triggers. */ + value = devc->trigger.simplevalue; + mask = devc->trigger.simplemask; + build_lut_entry(lut->m2d, value, mask); - /* Rise/fall trigger support. */ - for (i = 0, j = 0; i < 16; i++) { - if (devc->trigger.risingmask & (1 << i) || - devc->trigger.fallingmask & (1 << i)) - masks[j++] = 1 << i; + /* Scan for and process rise/fall triggers. */ + memset(&masks, 0, sizeof(masks)); + condidx = 0; + for (bitidx = 0; bitidx < 16; bitidx++) { + mask = 1 << bitidx; + value = devc->trigger.risingmask | devc->trigger.fallingmask; + if (!(value & mask)) + continue; + if (condidx == 0) + build_lut_entry(lut->m0d, mask, mask); + if (condidx == 1) + build_lut_entry(lut->m1d, mask, mask); + masks[condidx++] = mask; + if (condidx == ARRAY_SIZE(masks)) + break; } - build_lut_entry(masks[0], masks[0], lut->m0d); - build_lut_entry(masks[1], masks[1], lut->m1d); - - /* Add glue logic */ + /* Add glue logic for rise/fall triggers. */ if (masks[0] || masks[1]) { - /* Transition trigger. */ + lut->m3q = 0; if (masks[0] & devc->trigger.risingmask) - add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3); + add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3q); if (masks[0] & devc->trigger.fallingmask) - add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3); + add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3q); if (masks[1] & devc->trigger.risingmask) - add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3); + add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3q); if (masks[1] & devc->trigger.fallingmask) - add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3); - } else { - /* Only value/mask trigger. */ - lut->m3 = 0xffff; + add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3q); } /* Triggertype: event. */ - lut->params.selres = 3; + lut->params.selres = TRGSEL_SELCODE_NEVER; + lut->params.selinc = TRGSEL_SELCODE_LEVEL; + lut->params.sela = 0; /* Counter >= CMPA && LEVEL */ + lut->params.cmpa = 0; /* Count 0 -> 1 already triggers. */ return SR_OK; }