X-Git-Url: https://sigrok.org/gitweb/?a=blobdiff_plain;f=hardware%2Fikalogic-scanaplus%2Fprotocol.c;h=86597850afe2ab0d77e3d5947a6b2a1c1ad1177a;hb=ab4bb6eb7c6d7ab2eb212088a764fb696726c8dc;hp=2513153d218855627cb6d75aec906df726f6a11f;hpb=fdf4a1f5a0a04046ec014786b4a8fce125e1163c;p=libsigrok.git diff --git a/hardware/ikalogic-scanaplus/protocol.c b/hardware/ikalogic-scanaplus/protocol.c index 2513153d..86597850 100644 --- a/hardware/ikalogic-scanaplus/protocol.c +++ b/hardware/ikalogic-scanaplus/protocol.c @@ -20,12 +20,286 @@ #include "protocol.h" -SR_PRIV int ikalogic_scanaplus_receive_data(int fd, int revents, void *cb_data) +/* + * Logic level thresholds. + * + * For each of the two channel groups (1-4 and 5-9), the logic level + * threshold can be set independently. + * + * The threshold can be set to values that are usable for systems with + * different voltage levels, e.g. for 1.8V or 3.3V systems. + * + * The actual threshold value is always the middle of the values below. + * E.g. for a system voltage level of 1.8V, the threshold is at 0.9V. That + * means that values <= 0.9V are considered to be a logic 0/low, and + * values > 0.9V are considered to be a logic 1/high. + * + * - 1.2V system: threshold = 0.6V + * - 1.5V system: threshold = 0.75V + * - 1.8V system: threshold = 0.9V + * - 2.8V system: threshold = 1.4V + * - 3.3V system: threshold = 1.65V + */ +#define THRESHOLD_1_2V_SYSTEM 0x2e +#define THRESHOLD_1_5V_SYSTEM 0x39 +#define THRESHOLD_1_8V_SYSTEM 0x45 +#define THRESHOLD_2_8V_SYSTEM 0x6c +#define THRESHOLD_3_3V_SYSTEM 0x7f + +static int scanaplus_write(struct dev_context *devc, uint8_t *buf, int size) +{ + int i, bytes_written; + GString *s; + + /* Note: Caller checks devc, devc->ftdic, buf, size. */ + + s = g_string_sized_new(100); + g_string_printf(s, "Writing %d bytes: ", size); + for (i = 0; i < size; i++) + g_string_append_printf(s, "0x%02x ", buf[i]); + sr_spew("%s", s->str); + g_string_free(s, TRUE); + + bytes_written = ftdi_write_data(devc->ftdic, buf, size); + if (bytes_written < 0) { + sr_err("Failed to write FTDI data (%d): %s.", + bytes_written, ftdi_get_error_string(devc->ftdic)); + } else if (bytes_written != size) { + sr_err("FTDI write error, only %d/%d bytes written: %s.", + bytes_written, size, ftdi_get_error_string(devc->ftdic)); + } + + return bytes_written; +} + +SR_PRIV int scanaplus_close(struct dev_context *devc) +{ + int ret; + + /* Note: Caller checks devc and devc->ftdic. */ + + if ((ret = ftdi_usb_close(devc->ftdic)) < 0) { + sr_err("Failed to close FTDI device (%d): %s.", + ret, ftdi_get_error_string(devc->ftdic)); + return SR_ERR; + } + + return SR_OK; +} + +static void scanaplus_uncompress_block(struct dev_context *devc, + uint64_t num_bytes) { - const struct sr_dev_inst *sdi; + uint64_t i, j; + uint8_t num_samples, low, high; + + for (i = 0; i < num_bytes; i += 2) { + num_samples = devc->compressed_buf[i + 0] >> 1; + + low = devc->compressed_buf[i + 0] & (1 << 0); + high = devc->compressed_buf[i + 1]; + + for (j = 0; j < num_samples; j++) { + devc->sample_buf[devc->bytes_received++] = high; + devc->sample_buf[devc->bytes_received++] = low; + } + } +} + +static void send_samples(struct dev_context *devc, uint64_t samples_to_send) +{ + struct sr_datafeed_packet packet; + struct sr_datafeed_logic logic; + + sr_spew("Sending %" PRIu64 " samples.", samples_to_send); + + packet.type = SR_DF_LOGIC; + packet.payload = &logic; + logic.length = samples_to_send * 2; + logic.unitsize = 2; /* We need 2 bytes for 9 probes. */ + logic.data = devc->sample_buf; + sr_session_send(devc->cb_data, &packet); + + devc->samples_sent += samples_to_send; + devc->bytes_received -= samples_to_send * 2; +} + +SR_PRIV int scanaplus_get_device_id(struct dev_context *devc) +{ + int ret; + uint16_t val1, val2; + + /* FTDI EEPROM indices 16+17 contain the 3 device ID bytes. */ + if ((ret = ftdi_read_eeprom_location(devc->ftdic, 16, &val1)) < 0) { + sr_err("Failed to read EEPROM index 16 (%d): %s.", + ret, ftdi_get_error_string(devc->ftdic)); + return SR_ERR; + } + if ((ret = ftdi_read_eeprom_location(devc->ftdic, 17, &val2)) < 0) { + sr_err("Failed to read EEPROM index 17 (%d): %s.", + ret, ftdi_get_error_string(devc->ftdic)); + return SR_ERR; + } + + /* + * Note: Bit 7 of the three bytes must not be used, apparently. + * + * Even though the three bits can be either 0 or 1 (we've seen both + * in actual ScanaPLUS devices), the device ID as sent to the FPGA + * has bit 7 of each byte zero'd out. + * + * It is unknown whether bit 7 of these bytes has any meaning, + * whether it's used somewhere, or whether it can be simply ignored. + */ + devc->devid[0] = ((val1 >> 0) & 0xff) & ~(1 << 7); + devc->devid[1] = ((val1 >> 8) & 0xff) & ~(1 << 7); + devc->devid[2] = ((val2 >> 0) & 0xff) & ~(1 << 7); + + return SR_OK; +} + +static int scanaplus_clear_device_id(struct dev_context *devc) +{ + uint8_t buf[2]; + + buf[0] = 0x8c; + buf[1] = 0x00; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x8e; + buf[1] = 0x00; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x8f; + buf[1] = 0x00; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + return SR_OK; +} + +static int scanaplus_send_device_id(struct dev_context *devc) +{ + uint8_t buf[2]; + + buf[0] = 0x8c; + buf[1] = devc->devid[0]; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x8e; + buf[1] = devc->devid[1]; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x8f; + buf[1] = devc->devid[2]; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + return SR_OK; +} + +SR_PRIV int scanaplus_init(struct dev_context *devc) +{ + int i; + uint8_t buf[8]; + + buf[0] = 0x88; + buf[1] = 0x41; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x89; + buf[1] = 0x64; + buf[2] = 0x8a; + buf[3] = 0x64; + if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0) + return SR_ERR; + + buf[0] = 0x88; + buf[1] = 0x41; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x88; + buf[1] = 0x40; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x8d; + buf[1] = 0x01; + buf[2] = 0x8d; + buf[3] = 0x05; + buf[4] = 0x8d; + buf[5] = 0x01; + buf[6] = 0x8d; + buf[7] = 0x02; + if (scanaplus_write(devc, (uint8_t *)&buf, 8) < 0) + return SR_ERR; + + for (i = 0; i < 57; i++) { + buf[0] = 0x8d; + buf[1] = 0x06; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + buf[0] = 0x8d; + buf[1] = 0x02; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + } + + if (scanaplus_send_device_id(devc) < 0) + return SR_ERR; + + buf[0] = 0x88; + buf[1] = 0x40; + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + return SR_OK; +} + +SR_PRIV int scanaplus_start_acquisition(struct dev_context *devc) +{ + uint8_t buf[4]; + + /* Threshold and differential probe settings not yet implemented. */ + + buf[0] = 0x89; + buf[1] = 0x7f; /* Logic level threshold for probes 1-4. */ + buf[2] = 0x8a; + buf[3] = 0x7f; /* Logic level threshold for probes 5-9. */ + if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0) + return SR_ERR; + + buf[0] = 0x88; + buf[1] = 0x40; /* Special config of probes 5/6 and 7/8. */ + /* 0x40: normal, 0x50: ch56 diff, 0x48: ch78 diff, 0x58: ch5678 diff */ + if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) + return SR_ERR; + + if (scanaplus_clear_device_id(devc) < 0) + return SR_ERR; + + if (scanaplus_send_device_id(devc) < 0) + return SR_ERR; + + return SR_OK; +} + +SR_PRIV int scanaplus_receive_data(int fd, int revents, void *cb_data) +{ + int bytes_read; + struct sr_dev_inst *sdi; struct dev_context *devc; + uint64_t max, n; (void)fd; + (void)revents; if (!(sdi = cb_data)) return TRUE; @@ -33,8 +307,63 @@ SR_PRIV int ikalogic_scanaplus_receive_data(int fd, int revents, void *cb_data) if (!(devc = sdi->priv)) return TRUE; - if (revents == G_IO_IN) { - /* TODO */ + if (!devc->ftdic) + return TRUE; + + /* Get a block of data. */ + bytes_read = ftdi_read_data(devc->ftdic, devc->compressed_buf, + COMPRESSED_BUF_SIZE); + if (bytes_read < 0) { + sr_err("Failed to read FTDI data (%d): %s.", + bytes_read, ftdi_get_error_string(devc->ftdic)); + sdi->driver->dev_acquisition_stop(sdi, sdi); + return FALSE; + } + if (bytes_read == 0) { + sr_spew("Received 0 bytes, nothing to do."); + return TRUE; + } + + /* + * After a ScanaPLUS acquisition starts, a bunch of samples will be + * returned as all-zero, no matter which signals are actually present + * on the probes. This is probably due to the FPGA reconfiguring some + * of its internal state/config during this time. + * + * As far as we know there is apparently no way for the PC-side to + * know when this "reconfiguration" starts or ends. The FTDI chip + * will return all-zero "dummy" samples during this time, which is + * indistinguishable from actual all-zero samples. + * + * We currently simply ignore the first 64kB of data after an + * acquisition starts. Empirical tests have shown that the + * "reconfigure" time is a lot less than that usually. + */ + if (devc->compressed_bytes_ignored < COMPRESSED_BUF_SIZE) { + /* Ignore the first 64kB of data of every acquisition. */ + sr_spew("Ignoring first 64kB chunk of data."); + devc->compressed_bytes_ignored += COMPRESSED_BUF_SIZE; + return TRUE; + } + + /* TODO: Handle bytes_read which is not a multiple of 2? */ + scanaplus_uncompress_block(devc, bytes_read); + + n = devc->samples_sent + (devc->bytes_received / 2); + max = (SR_MHZ(100) / 1000) * devc->limit_msec; + + if (devc->limit_samples && (n >= devc->limit_samples)) { + send_samples(devc, devc->limit_samples - devc->samples_sent); + sr_info("Requested number of samples reached."); + sdi->driver->dev_acquisition_stop(sdi, cb_data); + return TRUE; + } else if (devc->limit_msec && (n >= max)) { + send_samples(devc, max - devc->samples_sent); + sr_info("Requested time limit reached."); + sdi->driver->dev_acquisition_stop(sdi, cb_data); + return TRUE; + } else { + send_samples(devc, devc->bytes_received / 2); } return TRUE;