X-Git-Url: https://sigrok.org/gitweb/?a=blobdiff_plain;f=decoders%2Frgb_led_ws281x%2Fpd.py;h=5f355942b392d3b751115ab76bf345bdf91fe125;hb=5e8090d7d30fb0915fc1b54f3ec098c69a417745;hp=295740515d41ef6286c1937c102a47d7a4fe30ba;hpb=6d1cde1daeea93b36c1c2c09e160e5b8042ef22b;p=libsigrokdecode.git diff --git a/decoders/rgb_led_ws281x/pd.py b/decoders/rgb_led_ws281x/pd.py index 2957405..5f35594 100644 --- a/decoders/rgb_led_ws281x/pd.py +++ b/decoders/rgb_led_ws281x/pd.py @@ -57,11 +57,7 @@ class Decoder(srd.Decoder): def reset(self): self.samplerate = None - self.oldpin = None - self.ss = None - self.es = None self.bits = [] - self.inreset = False def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) @@ -103,46 +99,77 @@ class Decoder(srd.Decoder): raise SamplerateError('Cannot decode without samplerate.') self.need_bits = len(self.options['type']) * 8 + # Either check for edges which communicate bit values, or for + # long periods of idle level which represent a reset pulse. + # Track the left-most, right-most, and inner edge positions of + # a bit. The positive period's width determines the bit's value. + # Initially synchronize to the input stream by searching for a + # low period, which preceeds a data bit or starts a reset pulse. + # Don't annotate the very first reset pulse, but process it. We + # may not see the right-most edge of a data bit when reset is + # adjacent to that bit time. + cond_bit_starts = {0: 'r'} + cond_inbit_edge = {0: 'f'} + samples_625ns = int(self.samplerate * 625e-9) + samples_50us = round(self.samplerate * 50e-6) + cond_reset_pulse = {'skip': samples_50us + 1} + conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse] + ss_bit, inv_bit, es_bit = None, None, None + pin, = self.wait({0: 'l'}) + inv_bit = self.samplenum + check_reset = False while True: - # TODO: Come up with more appropriate self.wait() conditions. - (pin,) = self.wait() + pin, = self.wait(conds) + + # Check RESET condition. Manufacturers may disagree on the + # minimal pulse width. 50us are recommended in datasheets, + # experiments suggest the limit is around 10us. + # When the RESET pulse is adjacent to the low phase of the + # last bit time, we have no appropriate condition for the + # bit time's end location. That's why this BIT's annotation + # is shorter (only spans the high phase), and the RESET + # annotation immediately follows (spans from the falling edge + # to the end of the minimum RESET pulse width). + if check_reset and self.matched[2]: + es_bit = inv_bit + ss_rst, es_rst = inv_bit, self.samplenum + + if ss_bit and inv_bit and es_bit: + # Decode last bit value. Use the last processed bit's + # width for comparison when available. Fallback to an + # arbitrary threshold otherwise (which can result in + # false detection of value 1 for those captures where + # high and low pulses are of similar width). + duty = inv_bit - ss_bit + thres = samples_625ns + if self.bits: + period = self.bits[-1][2] - self.bits[-1][1] + thres = period * 0.5 + bit_value = 1 if duty >= thres else 0 + self.handle_bit(ss_bit, inv_bit, bit_value, True) + + if ss_rst and es_rst: + text = ['RESET', 'RST', 'R'] + self.putg(ss_rst, es_rst, ANN_RESET, text) + check_reset = False - if self.oldpin is None: - self.oldpin = pin - continue - - # Check RESET condition (manufacturer recommends 50 usec minimal, - # but real minimum is ~10 usec). - if not self.inreset and not pin and self.es is not None and \ - self.ss is not None and \ - (self.samplenum - self.es) / self.samplerate > 50e-6: - - # Decode last bit value. - tH = (self.es - self.ss) / self.samplerate - bit_ = True if tH >= 625e-9 else False - - self.handle_bit(self.ss, self.es, bit_, True) - - text = ['RESET', 'RST', 'R'] - self.putg(self.es, self.samplenum, ANN_RESET, text) - - self.inreset = True self.bits.clear() - self.ss = None - - if not self.oldpin and pin: - # Rising edge. - if self.ss and self.es: - period = self.samplenum - self.ss - duty = self.es - self.ss + ss_bit, inv_bit, es_bit = None, None, None + + # Rising edge starts a bit time. Falling edge ends its high + # period. Get the previous bit's duty cycle and thus its + # bit value when the next bit starts. + if self.matched[0]: # and pin: + check_reset = False + if ss_bit and inv_bit: + # Got a previous bit? Handle it. + es_bit = self.samplenum + period = es_bit - ss_bit + duty = inv_bit - ss_bit # Ideal duty for T0H: 33%, T1H: 66%. - bit_ = (duty / period) > 0.5 - self.handle_bit(self.ss, self.samplenum, bit_) - self.ss = self.samplenum - - elif self.oldpin and not pin: - # Falling edge. - self.inreset = False - self.es = self.samplenum - - self.oldpin = pin + bit_value = 1 if (duty / period) > 0.5 else 0 + self.handle_bit(ss_bit, es_bit, bit_value) + ss_bit, inv_bit, es_bit = self.samplenum, None, None + if self.matched[1]: # and not pin: + check_reset = True + inv_bit = self.samplenum