X-Git-Url: https://sigrok.org/gitweb/?a=blobdiff_plain;f=decoders%2Fi2c%2Fpd.py;h=a2558dd3b6c0531650006b5a837e07deba468d9d;hb=e7c6af6eb047bb751c53741f18353e8d1635d8d5;hp=850b204db31a38ed1e647b7f7746731cb2780b50;hpb=5eb664089f9123a91841f66535ffb1689d9ddd98;p=libsigrokdecode.git diff --git a/decoders/i2c/pd.py b/decoders/i2c/pd.py index 850b204..a2558dd 100644 --- a/decoders/i2c/pd.py +++ b/decoders/i2c/pd.py @@ -46,6 +46,8 @@ Packet: command. Slave addresses do not include bit 0 (the READ/WRITE indication bit). For example, a slave address field could be 0x51 (instead of 0xa2). For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' is None. +For 'BITS' is a sequence of tuples of bit values and their start and +stop positions, in LSB first order (although the I2C protocol is MSB first). ''' # Meaning of table items: @@ -111,7 +113,6 @@ class Decoder(srd.Decoder): def reset(self): self.samplerate = None - self.ss = self.es = self.ss_byte = -1 self.is_write = None self.rem_addr_bytes = None self.is_repeat_start = False @@ -131,26 +132,26 @@ class Decoder(srd.Decoder): self.out_bitrate = self.register(srd.OUTPUT_META, meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit')) - def putx(self, data): - self.put(self.ss, self.es, self.out_ann, data) + def putg(self, ss, es, cls, text): + self.put(ss, es, self.out_ann, [cls, text]) - def putp(self, data): - self.put(self.ss, self.es, self.out_python, data) + def putp(self, ss, es, data): + self.put(ss, es, self.out_python, data) - def putb(self, data): - self.put(self.ss, self.es, self.out_binary, data) + def putb(self, ss, es, data): + self.put(ss, es, self.out_binary, data) def handle_start(self, pins): - self.ss, self.es = self.samplenum, self.samplenum + ss, es = self.samplenum, self.samplenum if self.is_repeat_start: cmd = 'START REPEAT' else: cmd = 'START' self.pdu_start = self.samplenum self.pdu_bits = 0 - self.putp([cmd, None]) + self.putp(ss, es, [cmd, None]) cls, texts = proto[cmd][0], proto[cmd][1:] - self.putx([cls, texts]) + self.putg(ss, es, cls, texts) self.state = 'FIND ADDRESS' self.is_repeat_start = True self.is_write = None @@ -170,8 +171,6 @@ class Decoder(srd.Decoder): # bit's end sample number from the second last bit's width. # (gsi: Shouldn't falling SCL be the end of the bit value?) # Keep the bits in receive order (MSB first) during accumulation. - if not self.data_bits: - self.ss_byte = self.samplenum if self.data_bits: self.data_bits[-1][2] = self.samplenum self.data_bits.append([sda, self.samplenum, self.samplenum]) @@ -223,33 +222,36 @@ class Decoder(srd.Decoder): cmd = 'DATA READ' bin_class = 2 - self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth + ss_byte, es_byte = self.data_bits[0][1], self.data_bits[-1][2] # Reverse the list of bits to LSB first order before emitting # annotations and passing bits to upper layers. This may be # unexpected because the protocol is MSB first, but it keeps # backwards compatibility. - self.data_bits.reverse() - self.putp(['BITS', self.data_bits]) - self.putp([cmd, d]) + lsb_bits = self.data_bits[:] + lsb_bits.reverse() + self.putp(ss_byte, es_byte, ['BITS', lsb_bits]) + self.putp(ss_byte, es_byte, [cmd, d]) - self.putb([bin_class, bytes([d])]) + self.putb(ss_byte, es_byte, [bin_class, bytes([d])]) - for b, ss, es in self.data_bits: + for bit_value, ss_bit, es_bit in lsb_bits: cls, texts = proto['BIT'][0], proto['BIT'][1:] - texts = [t.format(b = b) for t in texts] - self.put(ss, es, self.out_ann, [cls, texts]) + texts = [t.format(b = bit_value) for t in texts] + self.putg(ss_bit, es_bit, cls, texts) if cmd.startswith('ADDRESS') and is_seven: - self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth + # Assign the last bit's location to the R/W annotation. + # Adjust the address value's location to the left. + ss_bit, es_bit = self.data_bits[-1][1], self.data_bits[-1][2] + es_byte = self.data_bits[-2][2] cls = proto[cmd][0] w = ['Write', 'Wr', 'W'] if self.is_write else ['Read', 'Rd', 'R'] - self.putx([cls, w]) - self.ss, self.es = self.ss_byte, self.samplenum + self.putg(ss_bit, es_bit, cls, w) cls, texts = proto[cmd][0], proto[cmd][1:] texts = [t.format(b = d) for t in texts] - self.putx([cls, texts]) + self.putg(ss_byte, es_byte, cls, texts) # Done with this packet. self.data_bits.clear() @@ -260,11 +262,11 @@ class Decoder(srd.Decoder): # NOTE! Re-uses the last data bit's width for ACK/NAK as well. # Which might be acceptable because this decoder implementation # only gets to handle ACK/NAK after all DATA BITS were seen. - self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth + ss_bit, es_bit = self.samplenum, self.samplenum + self.bitwidth cmd = 'NACK' if (sda == 1) else 'ACK' - self.putp([cmd, None]) + self.putp(ss_bit, es_bit, [cmd, None]) cls, texts = proto[cmd][0], proto[cmd][1:] - self.putx([cls, texts]) + self.putg(ss_bit, es_bit, cls, texts) # Slave addresses can span one or two bytes, before data bytes # follow. There can be an arbitrary number of data bytes. Stick # with getting more address bytes if applicable, or enter or @@ -282,16 +284,16 @@ class Decoder(srd.Decoder): elapsed = self.samplenum - self.pdu_start + 1 elapsed /= self.samplerate bitrate = int(1 / elapsed * self.pdu_bits) - ss, es = self.pdu_start, self.samplenum - self.put(ss, es, self.out_bitrate, bitrate) + ss_meta, es_meta = self.pdu_start, self.samplenum + self.put(ss_meta, es_meta, self.out_bitrate, bitrate) self.pdu_start = None self.pdu_bits = 0 cmd = 'STOP' - self.ss, self.es = self.samplenum, self.samplenum - self.putp([cmd, None]) + ss, es = self.samplenum, self.samplenum + self.putp(ss, es, [cmd, None]) cls, texts = proto[cmd][0], proto[cmd][1:] - self.putx([cls, texts]) + self.putg(ss, es, cls, texts) self.state = 'FIND START' self.is_repeat_start = False self.is_write = None