pSTATE[24] = (6 << 3) | (6 << 0);
}
-void gpif_acquisition_start(const struct cmd_start_acquisition *cmd)
+bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd)
{
- xdata volatile BYTE *pSTATE;
+ int i;
+ volatile BYTE *pSTATE = &GPIF_WAVE_DATA;
/* Ensure GPIF is idle before reconfiguration. */
while (!(GPIFTRIG & 0x80));
bmGSTATE | bmIFGPIF;
}
- /* GPIF terminology: DP = decision point, NDP = non-decision-point */
+ /* Populate delay states */
+ if((cmd->sample_delay_h == 0 && cmd->sample_delay_l == 0) ||
+ cmd->sample_delay_h >= 6)
+ return false;
- /*
- * Populate WAVEDATA.
- *
- * This is the basic algorithm implemented in our GPIF state machine:
- *
- * State 0: NDP: Delay for a period of time.
- * State 1: DP: If EP2 is full, go to state 7 (the IDLE state), i.e.,
- * end the current waveform. Otherwise, sample data and go to
- * state 0 again, i.e., sample data until EP2 is full.
- * State 2: Unused.
- * State 3: Unused.
- * State 4: Unused.
- * State 5: Unused.
- * State 6: Unused.
- */
+ for(i = 0; i < cmd->sample_delay_h; i++)
+ gpif_make_delay_state(pSTATE++, 0);
- /* Populate S0 */
- gpif_make_delay_state(&GPIF_WAVE_DATA, cmd->sample_delay);
+ if(cmd->sample_delay_l != 0)
+ gpif_make_delay_state(pSTATE++, cmd->sample_delay_l);
/* Populate S1 - the decision point. */
- gpid_make_data_dp_state(&GPIF_WAVE_DATA + 1);
+ gpid_make_data_dp_state(pSTATE++);
/* Execute the whole GPIF waveform once. */
gpif_set_tc16(1);
/* Update the status. */
gpif_acquiring = TRUE;
+
+ return true;
}
void gpif_poll(void)
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
+#include <stdbool.h>
+
#include <command.h>
void gpif_init_la(void);
-void gpif_acquisition_start(const struct cmd_start_acquisition *cmd);
+bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd);
void gpif_poll(void);