--- /dev/null
+##
+## This file is part of the libsigrokdecode project.
+##
+## Copyright (C) 2018 Mike Jagdis <mjagdis@eris-associates.co.uk>
+##
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2 of the License, or
+## (at your option) any later version.
+##
+## This program is distributed in the hope that it will be useful,
+## but WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+## GNU General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with this program; if not, write to the Free Software
+## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+##
+
+import math
+import sigrokdecode as srd
+
+class SamplerateError(Exception):
+ pass
+
+class Decoder(srd.Decoder):
+ api_version = 3
+ id = 'swim'
+ name = 'SWIM'
+ longname = 'STM8 SWIM bus'
+ desc = 'STM8 Single Wire Interface Module (SWIM) protocol.'
+ license = 'gplv2+'
+ inputs = ['logic']
+ outputs = []
+ options = (
+ {'id': 'debug', 'desc': 'Debug', 'default': 'no', 'values': ('yes', 'no') },
+ )
+ channels = (
+ {'id': 'swim', 'name': 'SWIM', 'desc': 'SWIM data line'},
+ )
+ annotations = (
+ ('bit', 'Bit'),
+ ('enterseq', 'SWIM enter sequence'),
+ ('start-host', 'Start bit (host)'),
+ ('start-target', 'Start bit (target)'),
+ ('parity', 'Parity bit'),
+ ('ack', 'Acknowledgement'),
+ ('nack', 'Negative acknowledgement'),
+ ('byte-write', 'Byte write'),
+ ('byte-read', 'Byte read'),
+ ('cmd-unknown', 'Unknown SWIM command'),
+ ('cmd', 'SWIM command'),
+ ('bytes', 'Byte count'),
+ ('address', 'Address'),
+ ('data-write', 'Data write'),
+ ('data-read', 'Data read'),
+ ('debug', 'Debug'),
+ )
+ annotation_rows = (
+ ('bits', 'Bits', (0,)),
+ ('framing', 'Framing', (2, 3, 4, 5, 6, 7, 8)),
+ ('protocol', 'Protocol', (1, 9, 10, 11, 12, 13, 14)),
+ ('debug', 'Debug', (15,)),
+ )
+ binary = (
+ ('tx', 'Dump of data written to target'),
+ ('rx', 'Dump of data read from target'),
+ )
+
+ def __init__(self):
+ # SWIM clock for the target is normally HSI/2 where HSI is 8MHz +- 5%
+ # although the divisor can be removed by setting the SWIMCLK bit in
+ # the CLK_SWIMCCR register. There is no standard for the host so we
+ # will be generous and assume it is using an 8MHz +- 10% oscillator.
+ # We do not need to be accurate. We just need to avoid treating enter
+ # sequence pulses as bits. A synchronization frame will cause this
+ # to be adjusted.
+ self.HSI = 8000000
+ self.HSI_min = self.HSI * 0.9
+ self.HSI_max = self.HSI * 1.1
+ self.swim_clock = self.HSI_min / 2
+
+ self.eseq_edge = [[-1, None], [-1, None]]
+ self.eseq_pairnum = 0
+ self.eseq_pairstart = None
+
+ self.reset()
+
+ def reset(self):
+ self.bit_edge = [[-1, None], [-1, None]]
+ self.bit_maxlen = -1
+ self.bitseq_len = 0
+ self.bitseq_end = None
+ self.proto_state = 'CMD'
+
+ def metadata(self, key, value):
+ if key == srd.SRD_CONF_SAMPLERATE:
+ self.samplerate = value
+
+ def adjust_timings(self):
+ # A low-speed bit is 22 SWIM clocks long.
+ # There are options to shorten bits to 10 clocks or use HSI rather
+ # than HSI/2 as the SWIM clock but the longest valid bit should be no
+ # more than this many samples. This does not need to be accurate.
+ # It exists simply to prevent bits extending unecessarily far into
+ # trailing bus-idle periods. This will be adjusted every time we see
+ # a synchronization frame or start bit in order to show idle periods
+ # as accurately as possible.
+ self.bit_reflen = math.ceil(self.samplerate * 22 / self.swim_clock)
+
+ def start(self):
+ self.out_ann = self.register(srd.OUTPUT_ANN)
+ self.out_binary = self.register(srd.OUTPUT_BINARY)
+
+ if not self.samplerate:
+ raise SamplerateError('Cannot decode without samplerate.')
+
+ # A synchronization frame is a low that lasts for more than 64 but no
+ # more than 128 SWIM clock periods based on the standard SWIM clock.
+ # Note: we also allow for the possibility that the SWIM clock divisor
+ # has been disabled here.
+ self.sync_reflen_min = math.floor(self.samplerate * 64 / self.HSI_max)
+ self.sync_reflen_max = math.ceil(self.samplerate * 128 / (self.HSI_min / 2))
+
+ if self.options['debug'] == 'yes':
+ self.debug = True
+ else:
+ self.debug = False
+
+ # The SWIM entry sequence is 4 pulses at 2kHz followed by 4 at 1kHz.
+ self.eseq_reflen = math.ceil(self.samplerate / 2048)
+
+ self.adjust_timings()
+
+ def protocol(self):
+ if self.proto_state == 'CMD':
+ # Command
+ if self.bitseq_value == 0x00:
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['system reset', 'SRST', '!']])
+ elif self.bitseq_value == 0x01:
+ self.proto_state = 'N'
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['read on-the-fly', 'ROTF', 'r']])
+ elif self.bitseq_value == 0x02:
+ self.proto_state = 'N'
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['write on-the-fly', 'WOTF', 'w']])
+ else:
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [9, ['unknown', 'UNK']])
+ elif self.proto_state == 'N':
+ # Number of bytes
+ self.proto_byte_count = self.bitseq_value
+ self.proto_state = '@E'
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [11, ['byte count 0x%02x' % self.bitseq_value, 'bytes 0x%02x' % self.bitseq_value, '0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]])
+ elif self.proto_state == '@E':
+ # Address byte 1
+ self.proto_addr = self.bitseq_value
+ self.proto_addr_start = self.bitseq_start
+ self.proto_state = '@H'
+ elif self.proto_state == '@H':
+ # Address byte 2
+ self.proto_addr = (self.proto_addr << 8) | self.bitseq_value
+ self.proto_state = '@L'
+ elif self.proto_state == '@L':
+ # Address byte 3
+ self.proto_addr = (self.proto_addr << 8) | self.bitseq_value
+ self.proto_state = 'D'
+ self.put(self.proto_addr_start, self.bitseq_end, self.out_ann, [12, ['address 0x%06x' % self.proto_addr, 'addr 0x%06x' % self.proto_addr, '0x%06x' % self.proto_addr, '%06x' %self.proto_addr, '%x' % self.proto_addr]])
+ else:
+ if self.proto_byte_count > 0:
+ self.proto_byte_count -= 1
+ if self.proto_byte_count == 0:
+ self.proto_state = 'CMD'
+
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [13 + self.bitseq_dir, ['0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]])
+ self.put(self.bitseq_start, self.bitseq_end, self.out_binary, [0 + self.bitseq_dir, bytes([self.bitseq_value])])
+ if self.debug:
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [15, ['%d more' % self.proto_byte_count, '%d' % self.proto_byte_count]])
+
+ def bitseq(self, bitstart, bitend, bit):
+ if self.bitseq_len == 0:
+ # Looking for start of a bit sequence (command or byte).
+ self.bit_reflen = bitend - bitstart
+ self.bitseq_value = 0
+ self.bitseq_dir = bit
+ self.bitseq_len = 1
+ self.put(bitstart, bitend, self.out_ann, [2 + self.bitseq_dir, ['start', 's']])
+ elif (self.proto_state == 'CMD' and self.bitseq_len == 4) or (self.proto_state != 'CMD' and self.bitseq_len == 9):
+ # Parity bit
+ self.bitseq_end = bitstart
+ self.bitseq_len += 1
+
+ self.put(bitstart, bitend, self.out_ann, [4, ['parity', 'par', 'p']])
+
+ # The start bit is not data but was used for parity calculation.
+ self.bitseq_value &= 0xff
+ self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [7 + self.bitseq_dir, ['0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]])
+ elif (self.proto_state == 'CMD' and self.bitseq_len == 5) or (self.proto_state != 'CMD' and self.bitseq_len == 10):
+ # ACK/NACK bit.
+ if bit:
+ self.put(bitstart, bitend, self.out_ann, [5, ['ack', 'a']])
+ else:
+ self.put(bitstart, bitend, self.out_ann, [6, ['nack', 'n']])
+
+ # We only pass data that was ack'd up the stack.
+ if bit:
+ self.protocol()
+
+ self.bitseq_len = 0
+ else:
+ if self.bitseq_len == 1:
+ self.bitseq_start = bitstart
+ self.bitseq_value = (self.bitseq_value << 1) | bit
+ self.bitseq_len += 1
+
+ def bit(self, start, mid, end):
+ if mid - start >= end - mid:
+ self.put(start, end, self.out_ann, [0, ['0']])
+ bit = 0
+ else:
+ self.put(start, end, self.out_ann, [0, ['1']])
+ bit = 1
+
+ self.bitseq(start, end, bit)
+
+ def detect_synchronize_frame(self, start, end):
+ # Strictly speaking, synchronization frames are only recognised when
+ # SWIM is active. A falling edge on reset disables SWIM and an enter
+ # sequence is needed to re-enable it. However we do not want to be
+ # reliant on seeing the NRST pin just for that and we also want to be
+ # able to decode SWIM even if we just sample parts of the dialogue.
+ # For this reason we limit ourselves to only recognizing
+ # synchronization frames that have believable lengths based on our
+ # knowledge of the range of possible SWIM clocks.
+ if self.samplenum - self.eseq_edge[1][1] >= self.sync_reflen_min and self.samplenum - self.eseq_edge[1][1] <= self.sync_reflen_max:
+ self.put(self.eseq_edge[1][1], self.samplenum, self.out_ann, [1, ['synchronization frame', 'synchronization', 'sync', 's']])
+
+ # A low that lasts for more than 64 SWIM clock periods causes a
+ # reset of the SWIM communication state machine and will switch
+ # the SWIM to low-speed mode (SWIM_CSR.HS is cleared).
+ self.reset()
+
+ # The low SHOULD last 128 SWIM clocks. This is used to
+ # resynchronize in order to allow for variation in the frequency
+ # of the internal RC oscillator.
+ self.swim_clock = 128 * (self.samplerate / (self.samplenum - self.eseq_edge[1][1]))
+ self.adjust_timings()
+
+ def eseq_potential_start(self, start, end):
+ self.eseq_pairstart = start
+ self.eseq_reflen = end - start
+ self.eseq_pairnum = 1
+
+ def detect_enter_sequence(self, start, end):
+ # According to the spec the enter sequence is four pulses at 2kHz
+ # followed by four at 1kHz. We do not check the frequency but simply
+ # check the lengths of successive pulses against the first. This means
+ # we have no need to account for the accuracy (or lack of) of the
+ # host's oscillator.
+ if self.eseq_pairnum == 0 or abs(self.eseq_reflen - (end - start)) > 2:
+ self.eseq_potential_start(start, end)
+
+ elif self.eseq_pairnum < 4:
+ # The next three pulses should be the same length as the first.
+ self.eseq_pairnum += 1
+
+ if self.eseq_pairnum == 4:
+ self.eseq_reflen /= 2
+ else:
+ # The final four pulses should each be half the length of the
+ # initial pair. Again, a mismatch causes us to reset and use the
+ # current pulse as a new potential enter sequence start.
+ self.eseq_pairnum += 1
+ if self.eseq_pairnum == 8:
+ # Four matching pulses followed by four more that match each
+ # other but are half the length of the first 4. SWIM is active!
+ self.put(self.eseq_pairstart, end, self.out_ann, [1, ['enter sequence', 'enter seq', 'enter', 'ent', 'e']])
+ self.eseq_pairnum = 0
+
+ def decode(self):
+ while True:
+ if self.bit_maxlen >= 0:
+ (swim,) = self.wait()
+ self.bit_maxlen -= 1
+ else:
+ (swim,) = self.wait({0: 'e'})
+
+ if swim != self.eseq_edge[1][0]:
+ if swim == 1 and self.eseq_edge[1][1] is not None:
+ self.detect_synchronize_frame(self.eseq_edge[1][1], self.samplenum)
+ if self.eseq_edge[0][1] is not None:
+ self.detect_enter_sequence(self.eseq_edge[0][1], self.samplenum)
+ self.eseq_edge.pop(0)
+ self.eseq_edge.append([swim, self.samplenum])
+
+ if (swim != self.bit_edge[1][0] and (swim != 1 or self.bit_edge[1][0] != -1)) or self.bit_maxlen == 0:
+ if self.bit_maxlen == 0 and self.bit_edge[1][0] == 1:
+ swim = -1
+
+ if self.bit_edge[1][0] != 0 and swim == 0:
+ self.bit_maxlen = self.bit_reflen
+
+ if self.bit_edge[0][0] == 0 and self.bit_edge[1][0] == 1 and self.samplenum - self.bit_edge[0][1] <= self.bit_reflen + 2:
+ self.bit(self.bit_edge[0][1], self.bit_edge[1][1], self.samplenum)
+
+ self.bit_edge.pop(0)
+ self.bit_edge.append([swim, self.samplenum])