self.lnk_rise = 0
self.net_beg = 0
self.net_end = 0
+ self.net_len = 0
# Network layer variables
self.net_state = 'IDLE'
self.net_cnt = 0
# check if samplerate is appropriate
self.samplerate = metadata['samplerate']
if (self.options['overdrive']):
- self.put(0, 0, self.out_ann, [ANN_LINK, ['NOTE: Sample rate checks assume overdrive mode.']])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['NOTE: Sample rate checks assume overdrive mode.']])
if (self.samplerate < 2000000):
- self.put(0, 0, self.out_ann, [ANN_LINK, ['ERROR: Sampling rate is too low must be above 2MHz for proper overdrive mode decoding.']])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['ERROR: Sampling rate is too low must be above 2MHz for proper overdrive mode decoding.']])
elif (self.samplerate < 5000000):
- self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: Sampling rate is suggested to be above 5MHz for proper overdrive mode decoding.']])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['WARNING: Sampling rate is suggested to be above 5MHz for proper overdrive mode decoding.']])
else:
- self.put(0, 0, self.out_ann, [ANN_LINK, ['NOTE: Sample rate checks assume normal mode only.']])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['NOTE: Sample rate checks assume normal mode only.']])
if (self.samplerate < 400000):
- self.put(0, 0, self.out_ann, [ANN_LINK, ['ERROR: Sampling rate is too low must be above 400kHz for proper normal mode decoding.']])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['ERROR: Sampling rate is too low must be above 400kHz for proper normal mode decoding.']])
elif (self.samplerate < 1000000):
- self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: Sampling rate is suggested to be above 1MHz for proper normal mode decoding.']])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['WARNING: Sampling rate is suggested to be above 1MHz for proper normal mode decoding.']])
# The default 1-Wire time base is 30us, this is used to calculate sampling times.
- if (self.options['cnt_normal_bit']): self.cnt_normal_bit = self.options['cnt_normal_bit']
- else: self.cnt_normal_bit = int(float(self.samplerate) * 0.000015) - 1 # 15ns
- if (self.options['cnt_normal_presence']): self.cnt_normal_presence = self.options['cnt_normal_presence']
- else: self.cnt_normal_presence = int(float(self.samplerate) * 0.000075) - 1 # 75ns
- if (self.options['cnt_normal_reset']): self.cnt_normal_reset = self.options['cnt_normal_reset']
- else: self.cnt_normal_reset = int(float(self.samplerate) * 0.000480) - 1 # 480ns
- if (self.options['cnt_overdrive_bit']): self.cnt_overdrive_bit = self.options['cnt_overdrive_bit']
- else: self.cnt_overdrive_bit = int(float(self.samplerate) * 0.000002) - 1 # 2ns
- if (self.options['cnt_overdrive_presence']): self.cnt_overdrive_presence = self.options['cnt_overdrive_presence']
- else: self.cnt_overdrive_presence = int(float(self.samplerate) * 0.000010) - 1 # 10ns
- if (self.options['cnt_overdrive_reset']): self.cnt_overdrive_reset = self.options['cnt_overdrive_reset']
- else: self.cnt_overdrive_reset = int(float(self.samplerate) * 0.000048) - 1 # 48ns
+ if (self.options['cnt_normal_bit']):
+ self.cnt_normal_bit = self.options['cnt_normal_bit']
+ else:
+ self.cnt_normal_bit = int(float(self.samplerate) * 0.000015) - 1 # 15ns
+ if (self.options['cnt_normal_presence']):
+ self.cnt_normal_presence = self.options['cnt_normal_presence']
+ else:
+ self.cnt_normal_presence = int(float(self.samplerate) * 0.000075) - 1 # 75ns
+ if (self.options['cnt_normal_reset']):
+ self.cnt_normal_reset = self.options['cnt_normal_reset']
+ else:
+ self.cnt_normal_reset = int(float(self.samplerate) * 0.000480) - 1 # 480ns
+ if (self.options['cnt_overdrive_bit']):
+ self.cnt_overdrive_bit = self.options['cnt_overdrive_bit']
+ else:
+ self.cnt_overdrive_bit = int(float(self.samplerate) * 0.000002) - 1 # 2ns
+ if (self.options['cnt_overdrive_presence']):
+ self.cnt_overdrive_presence = self.options['cnt_overdrive_presence']
+ else:
+ self.cnt_overdrive_presence = int(float(self.samplerate) * 0.000010) - 1 # 10ns
+ if (self.options['cnt_overdrive_reset']):
+ self.cnt_overdrive_reset = self.options['cnt_overdrive_reset']
+ else:
+ self.cnt_overdrive_reset = int(float(self.samplerate) * 0.000048) - 1 # 48ns
+
+ # calculating the slot size
+ self.cnt_normal_slot = int(float(self.samplerate) * 0.000060) - 1 # 60ns
+ self.cnt_overdrive_slot = int(float(self.samplerate) * 0.000006) - 1 # 6ns
+
+ # organize values into lists
+ self.cnt_bit = [self.cnt_normal_bit , self.cnt_overdrive_bit ]
+ self.cnt_presence = [self.cnt_normal_presence, self.cnt_overdrive_presence]
+ self.cnt_reset = [self.cnt_normal_reset , self.cnt_overdrive_reset ]
+ self.cnt_slot = [self.cnt_normal_slot , self.cnt_overdrive_slot ]
# Check if sample times are in the allowed range
time_min = float(self.cnt_normal_bit ) / self.samplerate
time_max = float(self.cnt_normal_bit+1) / self.samplerate
if ( (time_min < 0.000005) or (time_max > 0.000015) ) :
- self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The normal mode data sample time interval (%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).' % (time_min*1000000, time_max*1000000)]])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['WARNING: The normal mode data sample time interval (%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).'
+ % (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_normal_presence ) / self.samplerate
time_max = float(self.cnt_normal_presence+1) / self.samplerate
if ( (time_min < 0.0000681) or (time_max > 0.000075) ) :
- self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The normal mode presence sample time interval (%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).' % (time_min*1000000, time_max*1000000)]])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['WARNING: The normal mode presence sample time interval (%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).'
+ % (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_overdrive_bit ) / self.samplerate
time_max = float(self.cnt_overdrive_bit+1) / self.samplerate
if ( (time_min < 0.000001) or (time_max > 0.000002) ) :
- self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The overdrive mode data sample time interval (%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).' % (time_min*1000000, time_max*1000000)]])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['WARNING: The overdrive mode data sample time interval (%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).'
+ % (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_overdrive_presence ) / self.samplerate
time_max = float(self.cnt_overdrive_presence+1) / self.samplerate
if ( (time_min < 0.0000073) or (time_max > 0.000010) ) :
- self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The overdrive mode presence sample time interval (%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).' % (time_min*1000000, time_max*1000000)]])
+ self.put(0, 0, self.out_ann, [ANN_LINK,
+ ['WARNING: The overdrive mode presence sample time interval (%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).'
+ % (time_min*1000000, time_max*1000000)]])
def report(self):
pass
self.lnk_state = 'WAIT FOR DATA SAMPLE'
elif self.lnk_state == 'WAIT FOR DATA SAMPLE':
# Sample data bit
- if (self.lnk_overdrive): cnt = self.cnt_overdrive_bit
- else : cnt = self.cnt_normal_bit
- if (self.samplenum - self.lnk_fall == cnt):
+ if (self.samplenum - self.lnk_fall == self.cnt_bit[self.lnk_overdrive]):
self.lnk_bit = owr & 0x1
self.lnk_event = "DATA BIT"
if (self.lnk_bit): self.lnk_state = 'WAIT FOR FALLING EDGE'
else : self.lnk_state = 'WAIT FOR RISING EDGE'
- self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK, ['BIT: %01x' % self.lnk_bit]])
+ self.put(self.lnk_fall, self.cnt_bit[self.lnk_overdrive], self.out_ann, [ANN_LINK, ['BIT: %01x' % self.lnk_bit]])
elif self.lnk_state == 'WAIT FOR RISING EDGE':
# The end of a cycle is a rising edge.
if (owr == 1):
# Send a reset event to the next protocol layer.
self.lnk_event = "RESET"
self.lnk_state = "WAIT FOR PRESENCE DETECT"
- self.put(self.lnk_fall, self.samplenum, self.out_proto, ['RESET'])
- self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK , ['RESET']])
- self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_NETWORK , ['RESET']])
+ self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET'])
+ self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET']])
+ self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET']])
# Reset the timer.
self.lnk_fall = self.samplenum
elif ((self.samplenum - self.lnk_fall > self.cnt_overdrive_reset) and (self.lnk_overdrive)):
# Send a reset event to the next protocol layer.
self.lnk_event = "RESET"
self.lnk_state = "WAIT FOR PRESENCE DETECT"
- self.put(self.lnk_fall, self.samplenum, self.out_proto, ['RESET OVERDRIVE'])
- self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK , ['RESET OVERDRIVE']])
- self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_NETWORK , ['RESET OVERDRIVE']])
+ self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET OVERDRIVE'])
+ self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET OVERDRIVE']])
+ self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET OVERDRIVE']])
# Reset the timer.
self.lnk_fall = self.samplenum
# Otherwise this is assumed to be a data bit.
self.lnk_state = "WAIT FOR FALLING EDGE"
elif self.lnk_state == 'WAIT FOR PRESENCE DETECT':
# Sample presence status
- if (self.lnk_overdrive): cnt = self.cnt_overdrive_presence
- else : cnt = self.cnt_normal_presence
- if (self.samplenum - self.lnk_rise == cnt):
+ if (self.samplenum - self.lnk_rise == self.cnt_presence[self.lnk_overdrive]):
self.lnk_present = owr & 0x1
# Save the sample number for the falling edge.
if not (self.lnk_present) : self.lnk_fall = self.samplenum
if (self.lnk_present) : self.lnk_state = 'WAIT FOR FALLING EDGE'
else : self.lnk_state = 'WAIT FOR RISING EDGE'
present_str = "False" if self.lnk_present else "True"
- self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK , ['PRESENCE: ' + present_str]])
- self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_NETWORK, ['PRESENCE: ' + present_str]])
+ self.put(self.samplenum, 0, self.out_ann, [ANN_LINK , ['PRESENCE: ' + present_str]])
+ self.put(self.samplenum, 0, self.out_ann, [ANN_NETWORK, ['PRESENCE: ' + present_str]])
else:
raise Exception('Invalid lnk_state: %d' % self.lnk_state)
elif (self.net_state == "COMMAND"):
# Receiving and decoding a ROM command
if (self.onewire_collect(8)):
- self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK, ['ROM COMMAND: 0x%02x \'%s\'' % (self.net_data, rom_command[self.net_data])]])
+ self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK,
+ ['ROM COMMAND: 0x%02x \'%s\'' % (self.net_data, rom_command[self.net_data])]])
if (self.net_data == 0x33): # READ ROM
self.net_state = "GET ROM"
elif (self.net_data == 0x0f): # CONDITIONAL READ ROM
# family code (1B) + serial number (6B) + CRC (1B)
if (self.onewire_collect(64)):
self.net_rom = self.net_data & 0xffffffffffffffff
- self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
+ self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
self.net_state = "TRANSPORT"
elif (self.net_state == "SEARCH ROM"):
# A 64 bit device address is searched for
# family code (1B) + serial number (6B) + CRC (1B)
if (self.onewire_search(64)):
self.net_rom = self.net_data & 0xffffffffffffffff
- self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
+ self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
self.net_state = "TRANSPORT"
elif (self.net_state == "TRANSPORT"):
# The transport layer is handled in byte sized units
if (self.onewire_collect(8)):
- self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK , ['TRANSPORT: 0x%02x' % self.net_data]])
- self.put(self.net_beg, self.net_end, self.out_ann, [ANN_TRANSPORT, ['TRANSPORT: 0x%02x' % self.net_data]])
- self.put(self.net_beg, self.net_end, self.out_proto, ['transfer', self.net_data])
+ self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK , ['TRANSPORT: 0x%02x' % self.net_data]])
+ self.put(self.net_beg, self.net_len, self.out_ann, [ANN_TRANSPORT, ['TRANSPORT: 0x%02x' % self.net_data]])
+ self.put(self.net_beg, self.net_len, self.out_proto, ['transfer', self.net_data])
# TODO: Sending translort layer data to 1-Wire device models
else:
raise Exception('Invalid net_state: %s' % self.net_state)
if (self.lnk_event == "DATA BIT"):
# Storing the sampe this sequence begins with
if (self.net_cnt == 1):
- self.net_beg = self.samplenum
+ self.net_beg = self.lnk_fall
self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
self.net_cnt = self.net_cnt + 1
# Storing the sampe this sequence ends with
# In case the full length of the sequence is received, return 1
if (self.net_cnt == length):
- self.net_end = self.samplenum
+ self.net_end = self.lnk_fall + self.cnt_slot[self.lnk_overdrive]
+ self.net_len = self.net_end - self.net_beg
self.net_data = self.net_data & ((1<<length)-1)
self.net_cnt = 0
return (1)
if (self.lnk_event == "DATA BIT"):
# Storing the sampe this sequence begins with
if ((self.net_cnt == 0) and (self.net_search == "P")):
- self.net_beg = self.samplenum
+ self.net_beg = self.lnk_fall
# Master receives an original address bit
if (self.net_search == "P"):
self.net_data_p = self.net_data_p & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
# Storing the sampe this sequence ends with
# In case the full length of the sequence is received, return 1
if (self.net_cnt == length):
- self.net_end = self.samplenum
+ self.net_end = self.lnk_fall + self.cnt_slot[self.lnk_overdrive]
+ self.net_len = self.net_end - self.net_beg
self.net_data_p = self.net_data_p & ((1<<length)-1)
self.net_data_n = self.net_data_n & ((1<<length)-1)
self.net_data = self.net_data & ((1<<length)-1)