#endif
}
+/**
+ * Multiply two sr_rational
+ *
+ * @param[in] a First value
+ * @param[in] b Second value
+ * @param[out] res Result
+ *
+ * The resulting nominator/denominator are reduced if the result would not fit
+ * otherwise. If the resulting nominator/denominator are relatively prime,
+ * this may not be possible.
+ *
+ * @retval SR_OK Success.
+ * @retval SR_ERR_ARG Resulting value to large
+ *
+ * @since 0.5.0
+ */
+SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
+ const struct sr_rational *b)
+{
+#ifdef HAVE___INT128_T
+ __int128_t p;
+ __uint128_t q;
+
+ p = (__int128_t)(a->p) * (__int128_t)(b->p);
+ q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
+
+ if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
+ while (!((p & 1) || (q & 1))) {
+ p /= 2;
+ q /= 2;
+ }
+ }
+
+ if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
+ // TODO: determine gcd to do further reduction
+ return SR_ERR_ARG;
+ }
+
+ res->p = (int64_t)(p);
+ res->q = (uint64_t)(q);
+
+ return SR_OK;
+
+#else
+ struct sr_int128_t p;
+ struct sr_uint128_t q;
+
+ mult_int64(&p, a->p, b->p);
+ mult_uint64(&q, a->q, b->q);
+
+ while (!(p.low & 1) && !(q.low & 1)) {
+ p.low /= 2;
+ if (p.high & 1) p.low |= (1ll << 63);
+ p.high >>= 1;
+ q.low /= 2;
+ if (q.high & 1) q.low |= (1ll << 63);
+ q.high >>= 1;
+ }
+
+ if (q.high)
+ return SR_ERR_ARG;
+ if ((p.high >= 0) && (p.low > INT64_MAX))
+ return SR_ERR_ARG;
+ if (p.high < -1)
+ return SR_ERR_ARG;
+
+ res->p = (int64_t)p.low;
+ res->q = q.low;
+
+ return SR_OK;
+#endif
+}
+
/** @} */
}
END_TEST
+START_TEST(test_mult_rational)
+{
+ const struct sr_rational r[][3] = {
+ /* a * b = c */
+ { { 1, 1 }, { 1, 1 }, { 1, 1 }},
+ { { 2, 1 }, { 3, 1 }, { 6, 1 }},
+ { { 1, 2 }, { 2, 1 }, { 1, 1 }},
+ /* Test negative numbers */
+ { { -1, 2 }, { 2, 1 }, { -1, 1 }},
+ { { -1, 2 }, { -2, 1 }, { 1, 1 }},
+ { { -(1ll<<20), (1ll<<10) }, { -(1ll<<20), 1 }, { (1ll<<30), 1 }},
+ /* Test reduction */
+ { { INT32_MAX, (1ll<<12) }, { (1<<2), 1 }, { INT32_MAX, (1ll<<10) }},
+ { { INT64_MAX, (1ll<<63) }, { (1<<3), 1 }, { INT64_MAX, (1ll<<60) }},
+ /* Test large numbers */
+ { { (1ll<<40), (1ll<<10) }, { (1ll<<30), 1 }, { (1ll<<60), 1 }},
+ { { -(1ll<<40), (1ll<<10) }, { -(1ll<<30), 1 }, { (1ll<<60), 1 }},
+
+ { { 1000, 1 }, { 8000, 1 }, { 8000000, 1 }},
+ { { 10000, 1 }, { 80000, 1 }, { 800000000, 1 }},
+ { { 10000*3, 4 }, { 80000*3, 1 }, { 200000000*9, 1 }},
+ { { 1, 1000 }, { 1, 8000 }, { 1, 8000000 }},
+ { { 1, 10000 }, { 1, 80000 }, { 1, 800000000 }},
+ { { 4, 10000*3 }, { 1, 80000*3 }, { 1, 200000000*9 }},
+
+ { { -10000*3, 4 }, { 80000*3, 1 }, { -200000000*9, 1 }},
+ { { 10000*3, 4 }, { -80000*3, 1 }, { -200000000*9, 1 }},
+ };
+
+ for (unsigned i = 0; i < ARRAY_SIZE(r); i++) {
+ struct sr_rational res;
+
+ int rc = sr_rational_mult(&res, &r[i][0], &r[i][1]);
+ fail_unless(rc == SR_OK);
+ fail_unless(sr_rational_eq(&res, &r[i][2]) == 1,
+ "sr_rational_mult() failed: [%d] %ld/%lu != %ld/%lu.",
+ i, res.p, res.q, r[i][2].p, r[i][2].q);
+ }
+}
+END_TEST
+
Suite *suite_analog(void)
{
Suite *s;
tcase_add_test(tc, test_set_rational);
tcase_add_test(tc, test_set_rational_null);
tcase_add_test(tc, test_cmp_rational);
+ tcase_add_test(tc, test_mult_rational);
suite_add_tcase(s, tc);
return s;