# ARM Cortex-M3 r1p1-01rel0 ID code
cm3_idcode = 0x3ba00477
+# http://infocenter.arm.com/help/topic/com.arm.doc.ddi0413c/Chdjibcg.html
+cm3_idcode_ver = {
+ 0x3: 'JTAG-DP',
+ 0x2: 'SW-DP',
+}
+cm3_idcode_part = {
+ 0xba00: 'JTAG-DP',
+ 0xba10: 'SW-DP',
+}
+
+# http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka14408.html
+jedec_id = {
+ 5: {
+ 0x3b: 'ARM Ltd.',
+ },
+}
+
# JTAG ID code in the STM32F10xxx BSC (boundary scan) TAP
jtag_idcode = {
0x06412041: 'Low-density device, rev. A',
# Bits[27:12]: Part number (here: 0xba00)
# JTAG-DP: 0xba00, SW-DP: 0xba10
# Bits[11:1]: JEDEC (JEP-106) manufacturer ID (here: 0x23b)
-# Bits[11:8]: Continuation code ('ARM Limited': 0x04)
-# Bits[7:1]: Identity code ('ARM Limited': 0x3b)
+# Bits[11:8]: Continuation code ('ARM Ltd.': 0x04)
+# Bits[7:1]: Identity code ('ARM Ltd.': 0x3b)
# Bits[0:0]: Reserved (here: 0x1)
def decode_device_id_code(bits):
id_hex = '0x%x' % int('0b' + bits, 2)
- ver = '0x%x' % int('0b' + bits[-32:-28], 2)
- part = '0x%x' % int('0b' + bits[-28:-12], 2)
- manuf = '0x%x' % int('0b' + bits[-12:-1], 2)
- res = '0x%x' % int('0b' + bits[-1], 2)
- return (id_hex, ver, part, manuf, res)
+ ver = cm3_idcode_ver.get(int('0b' + bits[-32:-28], 2), 'UNKNOWN')
+ part = cm3_idcode_part.get(int('0b' + bits[-28:-12], 2), 'UNKNOWN')
+ ids = jedec_id.get(int('0b' + bits[-12:-8], 2) + 1, {})
+ manuf = ids.get(int('0b' + bits[-7:-1], 2), 'UNKNOWN')
+ return (id_hex, manuf, ver, part)
# DPACC is used to access debug port registers (CTRL/STAT, SELECT, RDBUFF).
# APACC is used to access all Access Port (AHB-AP) registers.
def handle_reg_idcode(self, cmd, bits):
# IDCODE is a read-only register which is always accessible.
- # IR == IDCODE: The device ID code is shifted out via DR next.
+ # IR == IDCODE: The 32bit device ID code is shifted out via DR next.
+
+ id_hex, manuf, ver, part = decode_device_id_code(bits[:-1])
+ cc = '0x%x' % int('0b' + bits[:-1][-12:-8], 2)
+ ic = '0x%x' % int('0b' + bits[:-1][-7:-1], 2)
- s = self.samplenums
- s.reverse()
- id_hex, ver, part, manuf, res = decode_device_id_code(bits[:-1])
self.putf(0, 0, [1, ['Reserved (BS TAP)', 'BS', 'B']])
self.putf(1, 1, [1, ['Reserved', 'Res', 'R']])
+ self.putf(9, 12, [0, ['Continuation code: %s' % cc, 'CC', 'C']])
+ self.putf(2, 8, [0, ['Identity code: %s' % ic, 'IC', 'I']])
self.putf(2, 12, [1, ['Manufacturer: %s' % manuf, 'Manuf', 'M']])
self.putf(13, 28, [1, ['Part: %s' % part, 'Part', 'P']])
self.putf(29, 32, [1, ['Version: %s' % ver, 'Version', 'V']])
- self.ss = s[1][0]
- self.putx([2, ['IDCODE: %s (ver=%s, part=%s, manuf=%s, res=%s)' % \
+ self.ss = self.samplenums[1][0]
+ self.putx([2, ['IDCODE: %s (%s: %s/%s)' % \
decode_device_id_code(bits[:-1])]])
def handle_reg_dpacc(self, cmd, bits):
if cmd != 'NEW STATE':
# The right-most char in the 'val' bitstring is the LSB.
val, self.samplenums = val
+ self.samplenums.reverse()
# State machine
if self.state == 'IDLE':
# See UM 31.5 "STM32F10xxx JTAG TAP connection" for details.
self.state = ir.get(val[:-1][-4:], ['UNKNOWN', 0])[0]
bstap_ir = ir.get(val[:-1][:4], ['UNKNOWN', 0])[0]
- self.putf(3, 0, [1, ['IR (BS TAP): ' + bstap_ir]])
- self.putf(7, 4, [1, ['IR (M3 TAP): ' + self.state]])
- self.putf(8, 8, [1, ['Reserved (BS TAP)', 'BS', 'B']])
+ self.putf(5, 8, [1, ['IR (BS TAP): ' + bstap_ir]])
+ self.putf(1, 4, [1, ['IR (M3 TAP): ' + self.state]])
+ self.putf(0, 0, [1, ['Reserved (BS TAP)', 'BS', 'B']])
self.putx([2, ['IR: %s' % self.state]])
elif self.state == 'BYPASS':
# Here we're interested in incoming bits (TDI).