## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2016 Anthony Symons <antus@pcmhacking.net>
+## Copyright (C) 2023 Gerhard Sittig <gerhard.sittig@gmx.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
##
import sigrokdecode as srd
+from common.srdhelper import bitpack_msb
+
+# VPW Timings. From the SAE J1850 1995 rev section 23.406 documentation.
+# Ideal, minimum and maximum tolerances.
+VPW_SOF = 200
+VPW_SOFL = 164
+VPW_SOFH = 245 # 240 by the spec, 245 so a 60us 4x sample will pass
+VPW_LONG = 128
+VPW_LONGL = 97
+VPW_LONGH = 170 # 164 by the spec but 170 for low sample rate tolerance.
+VPW_SHORT = 64
+VPW_SHORTL = 24 # 35 by the spec, 24 to allow down to 6us as measured in practice for 4x @ 1mhz sampling
+VPW_SHORTH = 97
+VPW_IFS = 240
class SamplerateError(Exception):
pass
-def timeuf(t):
- return int (t * 1000.0 * 1000.0)
-
-class Ann:
- ANN_RAW, ANN_SOF, ANN_IFS, ANN_DATA, \
- ANN_PACKET = range(5)
+(
+ ANN_SOF, ANN_BIT, ANN_IFS, ANN_BYTE,
+ ANN_PRIO, ANN_DEST, ANN_SRC, ANN_MODE, ANN_DATA, ANN_CSUM,
+ ANN_M1_PID,
+ ANN_WARN,
+) = range(12)
class Decoder(srd.Decoder):
api_version = 3
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
annotations = (
- ('raw', 'Raw'),
('sof', 'SOF'),
+ ('bit', 'Bit'),
('ifs', 'EOF/IFS'),
+ ('byte', 'Byte'),
+ ('prio', 'Priority'),
+ ('dest', 'Destination'),
+ ('src', 'Source'),
+ ('mode', 'Mode'),
('data', 'Data'),
- ('packet', 'Packet'),
+ ('csum', 'Checksum'),
+ ('m1_pid', 'Pid'),
+ ('warn', 'Warning'),
)
annotation_rows = (
- ('raws', 'Raws', (Ann.ANN_RAW, Ann.ANN_SOF, Ann.ANN_IFS,)),
- ('bytes', 'Bytes', (Ann.ANN_DATA,)),
- ('packets', 'Packets', (Ann.ANN_PACKET,)),
+ ('bits', 'Bits', (ANN_SOF, ANN_BIT, ANN_IFS,)),
+ ('bytes', 'Bytes', (ANN_BYTE,)),
+ ('fields', 'Fields', (ANN_PRIO, ANN_DEST, ANN_SRC, ANN_MODE, ANN_DATA, ANN_CSUM,)),
+ ('values', 'Values', (ANN_M1_PID,)),
+ ('warns', 'Warnings', (ANN_WARN,)),
)
+ # TODO Add support for options? Polarity. Glitch length.
def __init__(self):
self.reset()
def reset(self):
- self.state = 'IDLE'
self.samplerate = None
- self.byte = 0 # the byte offset in the packet
- self.mode = 0 # for by packet decode
- self.data = 0 # the current byte
- self.datastart = 0 # sample number this byte started at
- self.csa = 0 # track the last byte seperately to retrospectively add the CS marker
- self.csb = 0
- self.count = 0 # which bit number we are up to
- self.active = 0 # which logic level is considered active
-
- # vpw timings. ideal, min and max tollerances.
- # From SAE J1850 1995 rev section 23.406
-
- self.sof = 200
- self.sofl = 164
- self.sofh = 245 # 240 by the spec, 245 so a 60us 4x sample will pass
- self.long = 128
- self.longl = 97
- self.longh = 170 # 164 by the spec but 170 for low sample rate tolerance.
- self.short = 64
- self.shortl = 24 # 35 by the spec, 24 to allow down to 6us as measured in practice for 4x @ 1mhz sampling
- self.shorth = 97
- self.ifs = 240
- self.spd = 1 # set to 4 when a 4x SOF is detected (VPW high speed frame)
+ self.active = 0 # Signal polarity. Needs to become an option?
+ self.bits = []
+ self.fields = {}
- def handle_bit(self, ss, es, b):
- self.data |= (b << 7-self.count) # MSB-first
- self.put(ss, es, self.out_ann, [Ann.ANN_RAW, ["%d" % b]])
- if self.count == 0:
- self.datastart = ss
- if self.count == 7:
- self.csa = self.datastart # for CS
- self.csb = self.samplenum # for CS
- self.put(self.datastart, self.samplenum, self.out_ann, [Ann.ANN_DATA, ["%02X" % self.data]])
- # add protocol parsing here
- if self.byte == 0:
- self.put(self.datastart, self.samplenum, self.out_ann, [Ann.ANN_PACKET, ['Priority','Prio','P']])
- elif self.byte == 1:
- self.put(self.datastart, self.samplenum, self.out_ann, [Ann.ANN_PACKET, ['Destination','Dest','D']])
- elif self.byte == 2:
- self.put(self.datastart, self.samplenum, self.out_ann, [Ann.ANN_PACKET, ['Source','Src','S']])
- elif self.byte == 3:
- self.put(self.datastart, self.samplenum, self.out_ann, [Ann.ANN_PACKET, ['Mode','M']])
- self.mode = self.data
- elif self.mode == 1 and self.byte == 4: # mode 1 payload
- self.put(self.datastart, self.samplenum, self.out_ann, [Ann.ANN_PACKET, ['Pid','P']])
-
- # prepare for next byte
- self.count = -1
- self.data = 0
- self.byte = self.byte + 1 # track packet offset
- self.count = self.count + 1
+ def start(self):
+ self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
- def start(self):
- self.out_ann = self.register(srd.OUTPUT_ANN)
+ def putg(self, ss, es, cls, texts):
+ self.put(ss, es, self.out_ann, [cls, texts])
+
+ def invalidate_frame_details(self):
+ self.bits.clear()
+ self.fields.clear()
+
+ def handle_databytes(self, fields, data):
+ # TODO Deep inspection of header fields and data values, including
+ # checksum verification results.
+ mode = fields.get('mode', None)
+ if mode is None:
+ return
+ if mode == 1:
+ # An earlier implementation commented that for mode 1 the
+ # first data byte would be the PID. But example captures
+ # have no data bytes in packets for that mode. This position
+ # is taken by the checksum. Is this correct?
+ pid = data[0] if data else fields.get('csum', None)
+ if pid is None:
+ text = ['PID missing']
+ self.putg(ss, es, ANN_WARN, text)
+ else:
+ byte_text = '{:02x}'.format(pid)
+ self.putg(ss, es, ANN_M1_PID, [byte_text])
+
+ def handle_byte(self, ss, es, b):
+ # Annotate all raw byte values. Inspect and process the first
+ # bytes in a frame already. Cease inspection and only accumulate
+ # all other bytes after the mode. The checksum's position and
+ # thus the data bytes' span will only be known when EOF or IFS
+ # were seen. Implementor's note: This method just identifies
+ # header fields. Processing is left to the .handle_databytes()
+ # method. Until then validity will have been checked, too (CS).
+ byte_text = '{:02x}'.format(b)
+ self.putg(ss, es, ANN_BYTE, [byte_text])
+
+ if not 'prio' in self.fields:
+ self.fields.update({'prio': b})
+ self.putg(ss, es, ANN_PRIO, [byte_text])
+ return
+ if not 'dest' in self.fields:
+ self.fields.update({'dest': b})
+ self.putg(ss, es, ANN_DEST, [byte_text])
+ return
+ if not 'src' in self.fields:
+ self.fields.update({'src': b})
+ self.putg(ss, es, ANN_SRC, [byte_text])
+ return
+ if not 'mode' in self.fields:
+ self.fields.update({'mode': b})
+ self.putg(ss, es, ANN_MODE, [byte_text])
+ return
+ if not 'data' in self.fields:
+ self.fields.update({'data': [], 'csum': None})
+ self.fields['data'].append((b, ss, es))
+
+ def handle_sof(self, ss, es, speed):
+ text = ['{speed:d}x SOF', 'S{speed:d}', 'S']
+ text = [f.format(speed = speed) for f in text]
+ self.putg(ss, es, ANN_SOF, text)
+ self.invalidate_frame_details()
+ self.fields.update({'speed': speed})
+
+ def handle_bit(self, ss, es, b):
+ self.bits.append((b, ss, es))
+ self.putg(ss, es, ANN_BIT, ['{:d}'.format(b)])
+ if len(self.bits) < 8:
+ return
+ ss, es = self.bits[0][1], self.bits[-1][2]
+ b = bitpack_msb(self.bits, 0)
+ self.bits.clear()
+ self.handle_byte(ss, es, b)
+
+ def handle_eof(self, ss, es, is_ifs = False):
+ # EOF or IFS were seen. Post process the data bytes sequence.
+ # Separate the checksum from the data bytes. Emit annotations.
+ # Pass data bytes and header fields to deeper inspection.
+ data = self.fields.get('data', {})
+ if not data:
+ text = ['Short data phase', 'Data']
+ self.putg(ss, es, ANN_WARN, text)
+ csum = None
+ if len(data) >= 1:
+ csum, ss_csum, es_csum = data.pop()
+ self.fields.update({'csum': csum})
+ # TODO Verify checksum's correctness?
+ if data:
+ ss_data, es_data = data[0][1], data[-1][2]
+ text = ' '.join(['{:02x}'.format(b[0]) for b in data])
+ self.putg(ss_data, es_data, ANN_DATA, [text])
+ if csum is not None:
+ text = '{:02x}'.format(csum)
+ self.putg(ss_csum, es_csum, ANN_CSUM, [text])
+ text = ['IFS', 'I'] if is_ifs else ['EOF', 'E']
+ self.putg(ss, es, ANN_IFS, text)
+ self.handle_databytes(self.fields, data);
+ self.invalidate_frame_details()
+
+ def handle_unknown(self, ss, es):
+ text = ['Unknown condition', 'Unknown', 'UNK']
+ self.putg(ss, es, ANN_WARN, text)
+ self.invalidate_frame_details()
+
+ def usecs_to_samples(self, us):
+ us *= 1e-6
+ us *= self.samplerate
+ return int(us)
+
+ def samples_to_usecs(self, n):
+ n /= self.samplerate
+ n *= 1000.0 * 1000.0
+ return int(n)
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
- self.wait({0: 'e'})
+ # Get the distance between edges. Classify the distance
+ # to derive symbols and data bit values. Prepare waiting
+ # for an interframe gap as well, while this part of the
+ # condition is optional (switches in and out at runtime).
+ conds_edge = {0: 'e'}
+ conds_edge_only = [conds_edge]
+ conds_edge_idle = [conds_edge, {'skip': 0}]
+ conds = conds_edge_only
+ self.wait(conds)
es = self.samplenum
+ spd = None
while True:
ss = es
- pin, = self.wait({0: 'e'})
+ pin, = self.wait(conds)
es = self.samplenum
+ count = es - ss
+ t = self.samples_to_usecs(count)
+
+ # Synchronization to the next frame. Wait for SOF.
+ # Silently keep synchronizing until SOF was seen.
+ if spd is None:
+ if not self.matched[0]:
+ continue
+ if pin != self.active:
+ continue
+
+ # Detect the frame's speed from the SOF length. Adjust
+ # the expected BIT lengths to the SOF derived speed.
+ # Arrange for the additional supervision of EOF/IFS.
+ if t in range(VPW_SOFL // 1, VPW_SOFH // 1):
+ spd = 1
+ elif t in range(VPW_SOFL // 4, VPW_SOFH // 4):
+ spd = 4
+ else:
+ continue
+ short_lower, short_upper = VPW_SHORTL // spd, VPW_SHORTH // spd
+ long_lower, long_upper = VPW_LONGL // spd, VPW_LONGH // spd
+ samples = self.usecs_to_samples(VPW_IFS // spd)
+ conds_edge_idle[-1]['skip'] = samples
+ conds = conds_edge_idle
+
+ # Emit the SOF annotation. Start collecting DATA.
+ self.handle_sof(ss, es, spd)
+ continue
+
+ # Inside the DATA phase. Get data bits. Handle EOF/IFS.
+ if len(conds) > 1 and self.matched[1]:
+ # TODO The current implementation gets here after a
+ # pre-determined minimum wait time. Does not differ
+ # between EOF and IFS. An earlier implementation had
+ # this developer note: EOF=239-280 IFS=281+
+ self.handle_eof(ss, es)
+ # Enter the IDLE phase. Wait for the next SOF.
+ spd = None
+ conds = conds_edge_only
+ continue
+ if t in range(short_lower, short_upper):
+ value = 1 if pin == self.active else 0
+ self.handle_bit(ss, es, value)
+ continue
+ if t in range(long_lower, long_upper):
+ value = 0 if pin == self.active else 1
+ self.handle_bit(ss, es, value)
+ continue
- samples = es - ss
- t = timeuf(samples / self.samplerate)
- if self.state == 'IDLE': # detect and set speed from the size of sof
- if pin == self.active and t in range(self.sofl , self.sofh):
- self.put(ss, es, self.out_ann, [Ann.ANN_RAW, ['1X SOF', 'S1', 'S']])
- self.spd = 1
- self.data = 0
- self.count = 0
- self.state = 'DATA'
- elif pin == self.active and t in range(int(self.sofl / 4) , int(self.sofh / 4)):
- self.put(ss, es, self.out_ann, [Ann.ANN_RAW, ['4X SOF', 'S4', '4']])
- self.spd = 4
- self.data = 0
- self.count = 0
- self.state = 'DATA'
-
- elif self.state == 'DATA':
- if t >= int(self.ifs / self.spd):
- self.state = 'IDLE'
- self.put(ss, es, self.out_ann, [Ann.ANN_RAW, ["EOF/IFS", "E"]]) # EOF=239-280 IFS=281+
- self.put(self.csa, self.csb, self.out_ann, [Ann.ANN_PACKET, ['Checksum','CS','C']]) # retrospective print of CS
- self.byte = 0 # reset packet offset
- elif t in range(int(self.shortl / self.spd), int(self.shorth / self.spd)):
- if pin == self.active:
- self.handle_bit(ss, es, 1)
- else:
- self.handle_bit(ss, es, 0)
- elif t in range(int(self.longl / self.spd), int(self.longh / self.spd)):
- if pin == self.active:
- self.handle_bit(ss, es, 0)
- else:
- self.handle_bit(ss, es, 1)
+ # Implementation detail: An earlier implementation used to
+ # ignore everything that was not handled above. This would
+ # be motivated by the noisy environment the protocol is
+ # typically used in. This more recent implementation accepts
+ # short glitches, but by design falls back to synchronization
+ # to the input stream for other unhandled conditions. This
+ # wants to improve usability of the decoder, by presenting
+ # potential issues to the user. The threshold (microseconds
+ # between edges that are not valid symbols that are handled
+ # above) is an arbitrary choice.
+ if t <= 2:
+ continue
+ self.handle_unknown(ss, es)
+ spd = None
+ conds = conds_edge_only