##
## This file is part of the libsigrokdecode project.
##
-## Copyright (C) 2010-2013 Uwe Hermann <uwe@hermann-uwe.de>
+## Copyright (C) 2010-2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
- 'STOP' (STOP condition)
- 'ACK' (ACK bit)
- 'NACK' (NACK bit)
+ - 'BITS' (<data>: list of data/address bits and their ss/es numbers)
<data> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
'STOP': [2, 'Stop', 'P'],
'ACK': [3, 'ACK', 'A'],
'NACK': [4, 'NACK', 'N'],
- 'ADDRESS READ': [5, 'Address read', 'AR'],
- 'ADDRESS WRITE': [6, 'Address write', 'AW'],
- 'DATA READ': [7, 'Data read', 'DR'],
- 'DATA WRITE': [8, 'Data write', 'DW'],
+ 'BIT': [5, 'Bit', 'B'],
+ 'ADDRESS READ': [6, 'Address read', 'AR'],
+ 'ADDRESS WRITE': [7, 'Address write', 'AW'],
+ 'DATA READ': [8, 'Data read', 'DR'],
+ 'DATA WRITE': [9, 'Data write', 'DW'],
}
class Decoder(srd.Decoder):
['stop', 'Stop condition'],
['ack', 'ACK'],
['nack', 'NACK'],
+ ['bit', 'Data/address bit'],
['address-read', 'Address read'],
['address-write', 'Address write'],
['data-read', 'Data read'],
['data-write', 'Data write'],
['warnings', 'Human-readable warnings'],
]
+ annotation_rows = (
+ ('bits', 'Bits', (5,)),
+ ('addr-data', 'Address/Data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
+ ('warnings', 'Warnings', (10,)),
+ )
binary = (
('address-read', 'Address read'),
('address-write', 'Address write'),
def __init__(self, **kwargs):
self.samplerate = None
- self.startsample = -1
+ self.ss = self.es = self.byte_ss = -1
self.samplenum = None
self.bitcount = 0
self.databyte = 0
self.wr = -1
self.is_repeat_start = 0
self.state = 'FIND START'
- self.oldscl = 1
- self.oldsda = 1
+ self.oldscl = self.oldsda = 1
self.oldpins = [1, 1]
self.pdu_start = None
self.pdu_bits = 0
+ self.bits = []
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
def putx(self, data):
- self.put(self.startsample, self.samplenum, self.out_ann, data)
+ self.put(self.ss, self.es, self.out_ann, data)
def putp(self, data):
- self.put(self.startsample, self.samplenum, self.out_python, data)
+ self.put(self.ss, self.es, self.out_python, data)
def putb(self, data):
- self.put(self.startsample, self.samplenum, self.out_binary, data)
+ self.put(self.ss, self.es, self.out_binary, data)
def is_start_condition(self, scl, sda):
# START condition (S): SDA = falling, SCL = high
return False
def found_start(self, scl, sda):
- self.startsample = self.samplenum
+ self.ss, self.es = self.samplenum, self.samplenum
self.pdu_start = self.samplenum
self.pdu_bits = 0
cmd = 'START REPEAT' if (self.is_repeat_start == 1) else 'START'
self.bitcount = self.databyte = 0
self.is_repeat_start = 1
self.wr = -1
+ self.bits = []
# Gather 8 bits of data plus the ACK/NACK bit.
def found_address_or_data(self, scl, sda):
self.databyte <<= 1
self.databyte |= sda
+ # Remember the start of the first data/address bit.
if self.bitcount == 0:
- self.startsample = self.samplenum
+ self.byte_ss = self.samplenum
+
+ # Store individual bits and their start/end samplenumbers.
+ # In the list, index 0 represents the LSB (I²C transmits MSB-first).
+ self.bits.insert(0, [sda, self.samplenum, self.samplenum])
+ if self.bitcount > 0:
+ self.bits[1][2] = self.samplenum
+ if self.bitcount == 7:
+ self.bitwidth = self.bits[1][2] - self.bits[2][2]
+ self.bits[0][2] += self.bitwidth
# Return if we haven't collected all 8 + 1 bits, yet.
- self.bitcount += 1
- if self.bitcount != 8:
+ if self.bitcount < 7:
+ self.bitcount += 1
return
- # We triggered on the ACK/NACK bit, but won't report that until later.
- self.startsample -= 1
-
d = self.databyte
if self.state == 'FIND ADDRESS':
# The READ/WRITE bit is only in address bytes, not data bytes.
cmd = 'DATA READ'
bin_class = 2
+ self.ss, self.es = self.byte_ss, self.samplenum + self.bitwidth
+
+ self.putp(['BITS', self.bits])
self.putp([cmd, d])
- self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], d),
- '%s: %02X' % (proto[cmd][2], d), '%02X' % d]])
+
self.putb((bin_class, bytes([d])))
+ for bit in self.bits:
+ self.put(bit[1], bit[2], self.out_ann, [5, ['%d' % bit[0]]])
+
+ if cmd.startswith('ADDRESS'):
+ self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
+ w = ['Write', 'Wr', 'W'] if self.wr else ['Read', 'Rd', 'R']
+ self.putx([proto[cmd][0], w])
+ self.ss, self.es = self.byte_ss, self.samplenum
+
+ self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], d),
+ '%s: %02X' % (proto[cmd][2], d), '%02X' % d]])
+
# Done with this packet.
- self.startsample = -1
self.bitcount = self.databyte = 0
+ self.bits = []
self.state = 'FIND ACK'
def get_ack(self, scl, sda):
- self.startsample = self.samplenum
+ self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
cmd = 'NACK' if (sda == 1) else 'ACK'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
# Meta bitrate
elapsed = 1 / float(self.samplerate) * (self.samplenum - self.pdu_start + 1)
bitrate = int(1 / elapsed * self.pdu_bits)
- self.put(self.startsample, self.samplenum, self.out_bitrate, bitrate)
+ self.put(self.byte_ss, self.samplenum, self.out_bitrate, bitrate)
- self.startsample = self.samplenum
cmd = 'STOP'
+ self.ss, self.es = self.samplenum, self.samplenum
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND START'
self.is_repeat_start = 0
self.wr = -1
+ self.bits = []
def decode(self, ss, es, data):
if self.samplerate is None:
self.pdu_bits += 1
- # TODO: Wait until the bus is idle (SDA = SCL = 1) first?
-
# State machine.
if self.state == 'FIND START':
if self.is_start_condition(scl, sda):
raise Exception('Invalid state: %s' % self.state)
# Save current SDA/SCL values for the next round.
- self.oldscl = scl
- self.oldsda = sda
+ self.oldscl, self.oldsda = scl, sda