--- /dev/null
+##
+## This file is part of the libsigrokdecode project.
+##
+## Copyright (C) 2015 Josef Gajdusek <atx@atx.name>
+##
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2 of the License, or
+## (at your option) any later version.
+##
+## This program is distributed in the hope that it will be useful,
+## but WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+## GNU General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with this program; if not, write to the Free Software
+## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+##
+
+import sigrokdecode as srd
+import operator
+import collections
+from functools import reduce
+
+end_codes = (
+ 'Unknown',
+ 'Charge Complete',
+ 'Internal Fault',
+ 'Over Temperature',
+ 'Over Voltage',
+ 'Over Current',
+ 'Battery Failure',
+ 'Reconfigure',
+ 'No Response',
+)
+
+class SamplerateError(Exception):
+ pass
+
+def calc_checksum(packet):
+ return reduce(operator.xor, packet[:-1])
+
+def bits_to_uint(bits):
+ # LSB first
+ return reduce(lambda i, v: (i >> 1) | (v << (len(bits) - 1)), bits, 0)
+
+class Decoder(srd.Decoder):
+ api_version = 2
+ id = 'qi'
+ name = 'Qi'
+ longname = 'Qi charger protocol'
+ desc = 'Protocol used by Qi receiver'
+ license = 'gplv2+'
+ inputs = ['logic']
+ outputs = ['qi']
+ channels = (
+ {'id': 'qi', 'name': 'Qi', 'desc': 'Demodulated Qi data line'},
+ )
+ annotations = (
+ ('bits', 'Bits'),
+ ('bytes-errors', 'Bit errors'),
+ ('bytes-start', 'Start bits'),
+ ('bytes-info', 'Info bits'),
+ ('bytes-data', 'Data bytes'),
+ ('packets-data', 'Packet data'),
+ ('packets-checksum-ok', 'Packet checksum'),
+ ('packets-checksum-err', 'Packet checksum'),
+ )
+ annotation_rows = (
+ ('bits', 'Bits', (0,)),
+ ('bytes', 'Bytes', (1, 2, 3, 4)),
+ ('packets', 'Packets', (5, 6, 7)),
+ )
+
+ def __init__(self, **kwargs):
+ self.samplerate = None
+ self.reset_variables()
+
+ def reset_variables(self):
+ self.counter = 0
+ self.prev = None
+ self.state = 'IDLE'
+ self.lastbit = 0
+ self.bytestart = 0
+ self.deq = collections.deque(maxlen = 2)
+ self.bits = []
+ self.bitsi = [0]
+ self.bytesi = []
+ self.packet = []
+
+ def metadata(self, key, value):
+ if key == srd.SRD_CONF_SAMPLERATE:
+ self.samplerate = value
+ self.bit_width = float(self.samplerate) / 2e3
+
+ def start(self):
+ self.out_ann = self.register(srd.OUTPUT_ANN)
+ self.reset_variables()
+
+ def packet_len(self, byte):
+ if 0x00 <= byte <= 0x1f:
+ return int(1 + (byte - 0) / 32)
+ if 0x20 <= byte <= 0x7f:
+ return int(2 + (byte - 32) / 16)
+ if 0x80 <= byte <= 0xdf:
+ return int(8 + (byte - 128) / 8)
+ if 0xe0 <= byte <= 0xff:
+ return int(20 + (byte - 224) / 4)
+
+ def in_tolerance(self, l):
+ return (0.75 * self.bit_width) < l < (1.25 * self.bit_width)
+
+ def putp(self, data):
+ self.put(self.bytesi[0], self.bytesi[-1], self.out_ann, [5, data])
+
+ def process_packet(self):
+ if self.packet[0] == 0x01: # Signal Strength
+ self.putp(['Signal Strength: %d' % self.packet[1],
+ 'SS: %d' % self.packet[1], 'SS'])
+ elif self.packet[0] == 0x02: # End Power Transfer
+ reason = end_codes[self.packet[1]] if self.packet[1] < len(end_codes) else 'Reserved'
+ self.putp(['End Power Transfer: %s' % reason,
+ 'EPT: %s' % reason, 'EPT'])
+ elif self.packet[0] == 0x03: # Control Error
+ val = self.packet[1] if self.packet[1] < 128 else (self.packet[1] & 0x7f) - 128
+ self.putp(['Control Error: %d' % val, 'CE: %d' % val, 'CE'])
+ elif self.packet[0] == 0x04: # Received Power
+ self.putp(['Received Power: %d' % self.packet[1],
+ 'RP: %d' % self.packet[1], 'RP'])
+ elif self.packet[0] == 0x05: # Charge Status
+ self.putp(['Charge Status: %d' % self.packet[1],
+ 'CS: %d' % self.packet[1], 'CS'])
+ elif self.packet[0] == 0x06: # Power Control Hold-off
+ self.putp(['Power Control Hold-off: %dms' % self.packet[1],
+ 'PCH: %d' % self.packet[1]], 'PCH')
+ elif self.packet[0] == 0x51: # Configuration
+ powerclass = (self.packet[1] & 0xc0) >> 7
+ maxpower = self.packet[1] & 0x3f
+ prop = (self.packet[3] & 0x80) >> 7
+ count = self.packet[3] & 0x07
+ winsize = (self.packet[4] & 0xf8) >> 3
+ winoff = self.packet[4] & 0x07
+ self.putp(['Configuration: Power Class = %d, Maximum Power = %d, Prop = %d,'
+ 'Count = %d, Window Size = %d, Window Offset = %d' %
+ (powerclass, maxpower, prop, count, winsize, winoff),
+ 'C: PC = %d MP = %d P = %d C = %d WS = %d WO = %d' %
+ (powerclass, maxpower, prop, count, winsize, winoff),
+ 'Configuration', 'C'])
+ elif self.packet[0] == 0x71: # Identification
+ version = '%d.%d' % ((self.packet[1] & 0xf0) >> 4, self.packet[1] & 0x0f)
+ mancode = '%02x%02x' % (self.packet[2], self.packet[3])
+ devid = '%02x%02x%02x%02x' % (self.packet[4] & ~0x80,
+ self.packet[5], self.packet[6], self.packet[7])
+ self.putp(['Identification: Version = %s, Manufacturer = %s, ' \
+ 'Device = %s' % (version, mancode, devid),
+ 'ID: %s %s %s' % (version, mancode, devid), 'ID'])
+ elif self.packet[0] == 0x81: # Extended Identification
+ edevid = '%02x%02x%02x%02x%02x%02x%02x%02x' % self.packet[1:-1]
+ self.putp(['Extended Identification: %s' % edevid,
+ 'EI: %s' % edevid, 'EI'])
+ elif self.packet[0] in (0x18, 0x19, 0x28, 0x29, 0x38, 0x48, 0x58, 0x68,
+ 0x78, 0x85, 0xa4, 0xc4, 0xe2): # Proprietary
+ self.putp(['Proprietary', 'P'])
+ else: # Unknown
+ self.putp(['Unknown', '?'])
+ self.put(self.bytesi[-1], self.samplenum, self.out_ann,
+ [6, ['Checksum OK', 'OK']] if \
+ calc_checksum(self.packet) == self.packet[-1]
+ else [6, ['Checksum error', 'ERR']])
+
+ def process_byte(self):
+ self.put(self.bytestart, self.bitsi[0], self.out_ann,
+ ([2, ['Start bit', 'Start', 'S']]) if self.bits[0] == 0 else
+ ([1, ['Start error', 'Start err', 'SE']]))
+ databits = self.bits[1:9]
+ data = bits_to_uint(databits)
+ parity = reduce(lambda i, v: (i + v) % 2, databits, 1)
+ self.put(self.bitsi[0], self.bitsi[8], self.out_ann, [4, ['%02x' % data]])
+ self.put(self.bitsi[8], self.bitsi[9], self.out_ann,
+ ([3, ['Parity bit', 'Parity', 'P']]) if self.bits[9] == parity else
+ ([1, ['Parity error', 'Parity err', 'PE']]))
+ self.put(self.bitsi[9], self.bitsi[10], self.out_ann,
+ ([3, ['Stop bit', 'Stop', 'S']]) if self.bits[10] == 1 else
+ ([1, ['Stop error', 'Stop err', 'SE']]))
+
+ self.bytesi.append(self.bytestart)
+ self.packet.append(data)
+ if self.packet_len(self.packet[0]) + 2 == len(self.packet):
+ self.process_packet()
+ self.bytesi.clear()
+ self.packet.clear()
+
+ def add_bit(self, bit):
+ self.bits.append(bit)
+ self.bitsi.append(self.samplenum)
+
+ if self.state == 'IDLE' and len(self.bits) >= 5 and \
+ self.bits[-5:] == [1, 1, 1, 1, 0]:
+ self.state = 'DATA'
+ self.bytestart = self.bitsi[-2]
+ self.bits = [0]
+ self.bitsi = [self.samplenum]
+ self.packet.clear()
+ elif self.state == 'DATA' and len(self.bits) == 11:
+ self.process_byte()
+ self.bytestart = self.samplenum
+ self.bits.clear()
+ self.bitsi.clear()
+ if self.state != 'IDLE':
+ self.put(self.lastbit, self.samplenum, self.out_ann, [0, ['%d' % bit]])
+ self.lastbit = self.samplenum
+
+ def handle_transition(self, l, htl):
+ self.deq.append(l)
+ if len(self.deq) >= 2 and \
+ (self.in_tolerance(self.deq[-1] + self.deq[-2]) or \
+ htl and self.in_tolerance(l * 2) and \
+ self.deq[-2] > 1.25 * self.bit_width):
+ self.add_bit(1)
+ self.deq.clear()
+ elif self.in_tolerance(l):
+ self.add_bit(0)
+ self.deq.clear()
+ elif l > (1.25 * self.bit_width):
+ self.state = 'IDLE'
+ self.bytesi.clear()
+ self.packet.clear()
+ self.bits.clear()
+ self.bitsi.clear()
+
+ def next_sample(self, s):
+ if s == self.prev:
+ self.counter += 1
+ else:
+ self.handle_transition(self.counter, s == 0)
+ self.prev = s
+ self.counter = 1
+
+ def decode(self, ss, es, data):
+ if not self.samplerate:
+ raise SamplerateError('Cannot decode without samplerate.')
+ for (self.samplenum, (qi,)) in data:
+ self.next_sample(qi)