inputs = ['jtag']
outputs = ['jtag_stm32']
annotations = (
- ('text', 'Human-readable text'),
+ ('item', 'Item'),
+ ('field', 'Field'),
+ ('command', 'Command'),
+ ('warning', 'Warning'),
+ )
+ annotation_rows = (
+ ('items', 'Items', (0,)),
+ ('fields', 'Fields', (1,)),
+ ('commands', 'Commands', (2,)),
+ ('warnings', 'Warnings', (3,)),
)
def __init__(self, **kwargs):
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
+ def putf(self, s, e, data):
+ self.put(self.samplenums[s][0], self.samplenums[e][1], self.out_ann, data)
+
def handle_reg_bypass(self, cmd, bits):
self.putx([0, ['BYPASS: ' + bits]])
def handle_reg_idcode(self, cmd, bits):
# IDCODE is a read-only register which is always accessible.
# IR == IDCODE: The device ID code is shifted out via DR next.
- self.putx([0, ['IDCODE: %s (ver=%s, part=%s, manuf=%s, res=%s)' % \
- decode_device_id_code(bits)]])
+
+ s = self.samplenums
+ s.reverse()
+ id_hex, ver, part, manuf, res = decode_device_id_code(bits[:-1])
+ self.putf(0, 0, [1, ['Reserved (BS TAP)', 'BS', 'B']])
+ self.putf(1, 1, [1, ['Reserved', 'Res', 'R']])
+ self.putf(2, 12, [1, ['Manufacturer: %s' % manuf, 'Manuf', 'M']])
+ self.putf(13, 28, [1, ['Part: %s' % part, 'Part', 'P']])
+ self.putf(29, 32, [1, ['Version: %s' % ver, 'Version', 'V']])
+
+ self.ss = s[1][0]
+ self.putx([2, ['IDCODE: %s (ver=%s, part=%s, manuf=%s, res=%s)' % \
+ decode_device_id_code(bits[:-1])]])
def handle_reg_dpacc(self, cmd, bits):
+ bits = bits[:-1]
s = data_in('DPACC', bits) if (cmd == 'DR TDI') else data_out(bits)
- self.putx([0, [s]])
+ self.putx([2, [s]])
def handle_reg_apacc(self, cmd, bits):
+ bits = bits[:-1]
s = data_in('APACC', bits) if (cmd == 'DR TDI') else data_out(bits)
- self.putx([0, [s]])
+ self.putx([2, [s]])
def handle_reg_abort(self, cmd, bits):
+ bits = bits[:-1]
# Bits[31:1]: reserved. Bit[0]: DAPABORT.
a = '' if (bits[0] == '1') else 'No '
s = 'DAPABORT = %s: %sDAP abort generated' % (bits[0], a)
- self.putx([0, [s]])
+ self.putx([2, [s]])
# Warn if DAPABORT[31:1] contains non-zero bits.
if (bits[:-1] != ('0' * 31)):
- self.putx([0, ['WARNING: DAPABORT[31:1] reserved!']])
+ self.putx([3, ['WARNING: DAPABORT[31:1] reserved!']])
def handle_reg_unknown(self, cmd, bits):
- self.putx([0, ['Unknown instruction: %s' % bits]])
+ bits = bits[:-1]
+ self.putx([2, ['Unknown instruction: %s' % bits]])
def decode(self, ss, es, data):
cmd, val = data
self.ss, self.es = ss, es
if cmd != 'NEW STATE':
- val, self.samplenums = val
-
# The right-most char in the 'val' bitstring is the LSB.
-
- # The STM32F10xxx has two serially connected JTAG TAPs, the
- # boundary scan tap (5 bits) and the Cortex-M3 TAP (4 bits).
- # See UM 31.5 "STM32F10xxx JTAG TAP connection" for details.
- # Due to this, we need to ignore the last bit of each data shift.
- val = val[:-1]
+ val, self.samplenums = val
# State machine
if self.state == 'IDLE':
# The STM32F10xxx has two serially connected JTAG TAPs, the
# boundary scan tap (5 bits) and the Cortex-M3 TAP (4 bits).
# See UM 31.5 "STM32F10xxx JTAG TAP connection" for details.
- # Currently we only care about the latter and use IR[3:0].
- self.state = ir.get(val[-4:], ['UNKNOWN', 0])[0]
- self.putx([0, ['IR: ' + self.state]])
+ self.state = ir.get(val[:-1][-4:], ['UNKNOWN', 0])[0]
+ bstap_ir = ir.get(val[:-1][:4], ['UNKNOWN', 0])[0]
+ self.putf(3, 0, [1, ['IR (BS TAP): ' + bstap_ir]])
+ self.putf(7, 4, [1, ['IR (M3 TAP): ' + self.state]])
+ self.putf(8, 8, [1, ['Reserved (BS TAP)', 'BS', 'B']])
+ self.putx([2, ['IR: %s' % self.state]])
elif self.state == 'BYPASS':
# Here we're interested in incoming bits (TDI).
if cmd != 'DR TDI':