libsigrok_la_SOURCES += \
src/hardware/sysclk-lwla/lwla.h \
src/hardware/sysclk-lwla/lwla.c \
+ src/hardware/sysclk-lwla/lwla1016.c \
+ src/hardware/sysclk-lwla/lwla1034.c \
src/hardware/sysclk-lwla/protocol.h \
src/hardware/sysclk-lwla/protocol.c \
src/hardware/sysclk-lwla/api.c
#include "libsigrok-internal.h"
#include "protocol.h"
+/* Supported device scan options.
+ */
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
-static const uint32_t devopts[] = {
+/* Driver capabilities.
+ */
+static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
- SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
- SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
- SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
- SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
- SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
- SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
- SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
- SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
+/* Supported trigger match conditions.
+ */
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_FALLING,
};
-/* The hardware supports more samplerates than these, but these are the
- * options hardcoded into the vendor's Windows GUI.
+/* Names assigned to available trigger sources.
*/
-static const uint64_t samplerates[] = {
- SR_MHZ(125), SR_MHZ(100),
- SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
- SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
- SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
- SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
- SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
- SR_HZ(500), SR_HZ(200), SR_HZ(100),
+static const char *const trigger_source_names[] = {
+ [TRIGGER_CHANNELS] = "CH",
+ [TRIGGER_EXT_TRG] = "TRG",
};
-/* Names assigned to available trigger sources. Indices must match
- * trigger_source enum values.
+/* Names assigned to available edge slope choices.
*/
-static const char *const trigger_source_names[] = { "CH", "TRG" };
+static const char *const signal_edge_names[] = {
+ [EDGE_POSITIVE] = "r",
+ [EDGE_NEGATIVE] = "f",
+};
-/* Names assigned to available trigger slope choices. Indices must
- * match the signal_edge enum values.
+/* Initialize the SysClk LWLA driver.
*/
-static const char *const signal_edge_names[] = { "r", "f" };
-
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
-static struct sr_dev_inst *dev_inst_new(void)
+/* Create a new sigrok device instance for the indicated LWLA model.
+ */
+static struct sr_dev_inst *dev_inst_new(const struct model_info *model)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
int i;
char name[8];
- /* Allocate memory for our private driver context. */
+ /* Initialize private device context. */
devc = g_malloc0(sizeof(struct dev_context));
+ devc->model = model;
+ devc->active_fpga_config = FPGA_NOCONF;
+ devc->cfg_rle = TRUE;
+ devc->samplerate = model->samplerates[0];
+ devc->channel_mask = (UINT64_C(1) << model->num_channels) - 1;
- /* Register the device with libsigrok. */
+ /* Create sigrok device instance. */
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INACTIVE;
sdi->vendor = g_strdup(VENDOR_NAME);
- sdi->model = g_strdup(MODEL_NAME);
-
- /* Enable all channels to match the default channel configuration. */
- devc->channel_mask = ALL_CHANNELS_MASK;
- devc->samplerate = DEFAULT_SAMPLERATE;
-
+ sdi->model = g_strdup(model->name);
sdi->priv = devc;
- for (i = 0; i < NUM_CHANNELS; ++i) {
+
+ /* Generate list of logic channels. */
+ for (i = 0; i < model->num_channels; i++) {
/* The LWLA series simply number channels from CH1 to CHxx. */
g_snprintf(name, sizeof(name), "CH%d", i + 1);
sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, name);
return sdi;
}
+/* Create a new device instance for a libusb device if it is a SysClk LWLA
+ * device and also matches the connection specification.
+ */
+static struct sr_dev_inst *dev_inst_new_matching(GSList *conn_matches,
+ libusb_device *dev)
+{
+ GSList *node;
+ struct sr_usb_dev_inst *usb;
+ const struct model_info *model;
+ struct sr_dev_inst *sdi;
+ struct libusb_device_descriptor des;
+ int bus, address;
+ unsigned int vid, pid;
+ int ret;
+
+ bus = libusb_get_bus_number(dev);
+ address = libusb_get_device_address(dev);
+
+ for (node = conn_matches; node != NULL; node = node->next) {
+ usb = node->data;
+ if (usb && usb->bus == bus && usb->address == address)
+ break; /* found */
+ }
+ if (conn_matches && !node)
+ return NULL; /* no match */
+
+ ret = libusb_get_device_descriptor(dev, &des);
+ if (ret != 0) {
+ sr_err("Failed to get USB device descriptor: %s.",
+ libusb_error_name(ret));
+ return NULL;
+ }
+ vid = des.idVendor;
+ pid = des.idProduct;
+
+ /* Create sigrok device instance. */
+ if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1016) {
+ model = &lwla1016_info;
+ } else if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1034) {
+ model = &lwla1034_info;
+ } else {
+ if (conn_matches)
+ sr_warn("USB device %d.%d (%04x:%04x) is not a"
+ " SysClk LWLA.", bus, address, vid, pid);
+ return NULL;
+ }
+ sdi = dev_inst_new(model);
+
+ sdi->inst_type = SR_INST_USB;
+ sdi->conn = sr_usb_dev_inst_new(bus, address, NULL);
+
+ return sdi;
+}
+
+/* Scan for SysClk LWLA devices and create a device instance for each one.
+ */
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
- GSList *usb_devices, *devices, *node;
+ GSList *conn_devices, *devices, *node;
struct drv_context *drvc;
struct sr_dev_inst *sdi;
- struct sr_usb_dev_inst *usb;
struct sr_config *src;
const char *conn;
+ libusb_device **devlist;
+ ssize_t num_devs, i;
drvc = di->context;
- conn = USB_VID_PID;
+ conn = NULL;
+ conn_devices = NULL;
+ devices = NULL;
for (node = options; node != NULL; node = node->next) {
src = node->data;
break;
}
}
- usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
- devices = NULL;
+ if (conn) {
+ /* Find devices matching the connection specification. */
+ conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
+ }
- for (node = usb_devices; node != NULL; node = node->next) {
- usb = node->data;
+ /* List all libusb devices. */
+ num_devs = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
+ if (num_devs < 0) {
+ sr_err("Failed to list USB devices: %s.",
+ libusb_error_name(num_devs));
+ g_slist_free_full(conn_devices,
+ (GDestroyNotify)&sr_usb_dev_inst_free);
+ return NULL;
+ }
- /* Create sigrok device instance. */
- sdi = dev_inst_new();
- if (!sdi) {
- sr_usb_dev_inst_free(usb);
- continue;
- }
- sdi->driver = di;
- sdi->inst_type = SR_INST_USB;
- sdi->conn = usb;
+ /* Scan the USB device list for matching LWLA devices. */
+ for (i = 0; i < num_devs; i++) {
+ sdi = dev_inst_new_matching(conn_devices, devlist[i]);
+ if (!sdi)
+ continue; /* no match */
/* Register device instance with driver. */
+ sdi->driver = di;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
}
- g_slist_free(usb_devices);
+ libusb_free_device_list(devlist, 1);
+ g_slist_free_full(conn_devices, (GDestroyNotify)&sr_usb_dev_inst_free);
return devices;
}
+/* Return the list of devices found during scan.
+ */
static GSList *dev_list(const struct sr_dev_driver *di)
{
struct drv_context *drvc;
return drvc->instances;
}
+/* Destroy the private device context.
+ */
static void clear_dev_context(void *priv)
{
struct dev_context *devc;
devc = priv;
+ if (devc->acquisition) {
+ sr_err("Cannot clear device context during acquisition!");
+ return; /* leak and pray */
+ }
sr_dbg("Device context cleared.");
- lwla_free_acquisition_state(devc->acquisition);
g_free(devc);
}
+/* Destroy all device instances.
+ */
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, &clear_dev_context);
}
+/* Open and initialize device.
+ */
static int dev_open(struct sr_dev_inst *sdi)
{
struct drv_context *drvc;
+ struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int ret;
drvc = sdi->driver->context;
+ devc = sdi->priv;
+ usb = sdi->conn;
if (!drvc) {
sr_err("Driver was not initialized.");
sr_err("Device already open.");
return SR_ERR;
}
- usb = sdi->conn;
ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
if (ret != SR_OK)
sr_usb_close(usb);
return SR_ERR;
}
+
sdi->status = SR_ST_ACTIVE;
- ret = lwla_init_device(sdi);
+ devc->active_fpga_config = FPGA_NOCONF;
+ devc->state = STATE_IDLE;
+
+ ret = (*devc->model->apply_fpga_config)(sdi);
+
+ if (ret == SR_OK)
+ ret = (*devc->model->device_init_check)(sdi);
+
if (ret != SR_OK) {
- sr_usb_close(usb);
sdi->status = SR_ST_INACTIVE;
+ sr_usb_close(usb);
}
return ret;
}
+/* Shutdown and close device.
+ */
static int dev_close(struct sr_dev_inst *sdi)
{
- struct sr_usb_dev_inst *usb;
+ struct drv_context *drvc;
struct dev_context *devc;
+ struct sr_usb_dev_inst *usb;
int ret;
- if (!sdi->driver->context) {
+ drvc = sdi->driver->context;
+ devc = sdi->priv;
+ usb = sdi->conn;
+
+ if (!drvc) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
- usb = sdi->conn;
- devc = sdi->priv;
-
- if (sdi->status == SR_ST_INACTIVE)
+ if (sdi->status == SR_ST_INACTIVE) {
+ sr_dbg("Device already closed.");
return SR_OK;
-
- if (devc && devc->acquisition) {
- sr_err("Attempt to close device during acquisition.");
- return SR_ERR;
}
+ if (devc->acquisition) {
+ sr_err("Cannot close device during acquisition!");
+ /* Request stop, leak handle, and prepare for the worst. */
+ devc->cancel_requested = TRUE;
+ return SR_ERR_BUG;
+ }
+
sdi->status = SR_ST_INACTIVE;
- /* Trigger download of the shutdown bitstream. */
- ret = lwla_set_clock_config(sdi);
+ /* Download of the shutdown bitstream, if any. */
+ ret = (*devc->model->apply_fpga_config)(sdi);
if (ret != SR_OK)
- sr_err("Unable to shut down device.");
+ sr_warn("Unable to shut down device.");
libusb_release_interface(usb->devhdl, USB_INTERFACE);
sr_usb_close(usb);
return ret;
}
-static int cleanup(const struct sr_dev_driver *di)
+/* Check whether the device options contain a specific key.
+ * Also match against get/set/list bits if specified.
+ */
+static int has_devopt(const struct model_info *model, uint32_t key)
{
- return dev_clear(di);
+ unsigned int i;
+
+ for (i = 0; i < model->num_devopts; i++) {
+ if ((model->devopts[i] & (SR_CONF_MASK | key)) == key)
+ return TRUE;
+ }
+ return FALSE;
}
+/* Read device configuration setting.
+ */
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
devc = sdi->priv;
+ if (!has_devopt(devc->model, key | SR_CONF_GET))
+ return SR_ERR_NA;
+
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->samplerate);
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
+ case SR_CONF_RLE:
+ *data = g_variant_new_boolean(devc->cfg_rle);
+ break;
case SR_CONF_EXTERNAL_CLOCK:
*data = g_variant_new_boolean(devc->cfg_clock_source
== CLOCK_EXT_CLK);
*data = g_variant_new_string(signal_edge_names[idx]);
break;
default:
- return SR_ERR_NA;
+ /* Must not happen for a key listed in devopts. */
+ return SR_ERR_BUG;
}
return SR_OK;
return -1;
}
+/* Write device configuration setting.
+ */
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
(void)cg;
+ if (!sdi)
+ return SR_ERR_ARG;
+
devc = sdi->priv;
- if (!devc)
- return SR_ERR_DEV_CLOSED;
+
+ if (!has_devopt(devc->model, key | SR_CONF_SET))
+ return SR_ERR_NA;
switch (key) {
case SR_CONF_SAMPLERATE:
value = g_variant_get_uint64(data);
- if (value < samplerates[ARRAY_SIZE(samplerates) - 1]
- || value > samplerates[0])
+ if (value < devc->model->samplerates[devc->model->num_samplerates - 1]
+ || value > devc->model->samplerates[0])
return SR_ERR_SAMPLERATE;
devc->samplerate = value;
break;
return SR_ERR_ARG;
devc->limit_samples = value;
break;
+ case SR_CONF_RLE:
+ devc->cfg_rle = g_variant_get_boolean(data);
+ break;
case SR_CONF_EXTERNAL_CLOCK:
devc->cfg_clock_source = (g_variant_get_boolean(data))
? CLOCK_EXT_CLK : CLOCK_INTERNAL;
devc->cfg_trigger_slope = idx;
break;
default:
- return SR_ERR_NA;
+ /* Must not happen for a key listed in devopts. */
+ return SR_ERR_BUG;
}
return SR_OK;
}
+/* Apply channel configuration change.
+ */
static int config_channel_set(const struct sr_dev_inst *sdi,
- struct sr_channel *ch, unsigned int changes)
+ struct sr_channel *ch, unsigned int changes)
{
uint64_t channel_bit;
struct dev_context *devc;
+ if (!sdi)
+ return SR_ERR_ARG;
+
devc = sdi->priv;
- if (!devc)
- return SR_ERR_DEV_CLOSED;
- if (ch->index < 0 || ch->index >= NUM_CHANNELS) {
+ if (ch->index < 0 || ch->index >= devc->model->num_channels) {
sr_err("Channel index %d out of range.", ch->index);
return SR_ERR_BUG;
}
- channel_bit = (uint64_t)1 << ch->index;
if ((changes & SR_CHANNEL_SET_ENABLED) != 0) {
- /* Enable or disable input channel for this channel. */
+ channel_bit = UINT64_C(1) << ch->index;
+
+ /* Enable or disable logic input for this channel. */
if (ch->enabled)
devc->channel_mask |= channel_bit;
else
return SR_OK;
}
+/* Derive trigger masks from the session's trigger configuration.
+ */
static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
{
uint64_t trigger_mask;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *node;
+ int idx;
devc = sdi->priv;
if (!match->channel->enabled)
continue; /* ignore disabled channel */
- channel_bit = (uint64_t)1 << match->channel->index;
+ idx = match->channel->index;
+
+ if (idx < 0 || idx >= devc->model->num_channels) {
+ sr_err("Channel index %d out of range.", idx);
+ return SR_ERR_BUG; /* should not happen */
+ }
+ channel_bit = UINT64_C(1) << idx;
trigger_mask |= channel_bit;
switch (match->match) {
trigger_edge_mask |= channel_bit;
break;
default:
- sr_err("Unsupported trigger match for CH%d.",
- match->channel->index + 1);
+ sr_err("Unsupported trigger match for CH%d.", idx + 1);
return SR_ERR_ARG;
}
}
return SR_OK;
}
+/* Apply current device configuration to the hardware.
+ */
static int config_commit(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
- int rc;
+ int ret;
+
+ devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
- devc = sdi->priv;
if (devc->acquisition) {
sr_err("Acquisition still in progress?");
return SR_ERR;
}
- rc = prepare_trigger_masks(sdi);
- if (rc != SR_OK)
- return rc;
- return lwla_set_clock_config(sdi);
+ ret = prepare_trigger_masks(sdi);
+ if (ret != SR_OK)
+ return ret;
+
+ ret = (*devc->model->apply_fpga_config)(sdi);
+ if (ret != SR_OK) {
+ sr_err("Failed to apply FPGA configuration.");
+ return ret;
+ }
+
+ return SR_OK;
}
-static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
+/* List available choices for a configuration setting.
+ */
+static int config_list(uint32_t key, GVariant **data,
+ const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
+ struct dev_context *devc;
GVariant *gvar;
GVariantBuilder gvb;
- (void)sdi;
(void)cg;
- switch (key) {
- case SR_CONF_SCAN_OPTIONS:
+ if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
- scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
- break;
- case SR_CONF_DEVICE_OPTIONS:
+ scanopts, ARRAY_SIZE(scanopts),
+ sizeof(scanopts[0]));
+ return SR_OK;
+ }
+ if (!sdi) {
+ if (key != SR_CONF_DEVICE_OPTIONS)
+ return SR_ERR_ARG;
+
+ /* List driver capabilities. */
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
- devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
- break;
+ drvopts, ARRAY_SIZE(drvopts),
+ sizeof(drvopts[0]));
+ return SR_OK;
+ }
+
+ devc = sdi->priv;
+
+ /* List the model's device options. */
+ if (key == SR_CONF_DEVICE_OPTIONS) {
+ *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
+ devc->model->devopts,
+ devc->model->num_devopts,
+ sizeof(devc->model->devopts[0]));
+ return SR_OK;
+ }
+
+ if (!has_devopt(devc->model, key | SR_CONF_LIST))
+ return SR_ERR_NA;
+
+ switch (key) {
case SR_CONF_SAMPLERATE:
- g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
- gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
- samplerates, ARRAY_SIZE(samplerates),
- sizeof(uint64_t));
+ g_variant_builder_init(&gvb, G_VARIANT_TYPE_VARDICT);
+ gvar = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
+ devc->model->samplerates,
+ devc->model->num_samplerates,
+ sizeof(devc->model->samplerates[0]));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_MATCH:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
- trigger_matches, ARRAY_SIZE(trigger_matches),
- sizeof(int32_t));
+ trigger_matches,
+ ARRAY_SIZE(trigger_matches),
+ sizeof(trigger_matches[0]));
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(trigger_source_names,
ARRAY_SIZE(signal_edge_names));
break;
default:
- return SR_ERR_NA;
+ /* Must not happen for a key listed in devopts. */
+ return SR_ERR_BUG;
}
return SR_OK;
}
+/* Set up the device hardware to begin capturing samples as soon as the
+ * configured trigger conditions are met, or immediately if no triggers
+ * are configured.
+ */
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
- struct drv_context *drvc;
- struct dev_context *devc;
- struct acquisition_state *acq;
- int ret;
-
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
- devc = sdi->priv;
- drvc = sdi->driver->context;
-
- if (devc->acquisition) {
- sr_err("Acquisition still in progress?");
- return SR_ERR;
- }
- acq = lwla_alloc_acquisition_state();
- if (!acq)
- return SR_ERR_MALLOC;
-
- devc->cancel_requested = FALSE;
- devc->stopping_in_progress = FALSE;
- devc->transfer_error = FALSE;
-
sr_info("Starting acquisition.");
- devc->acquisition = acq;
- ret = lwla_setup_acquisition(sdi);
- if (ret != SR_OK) {
- sr_err("Failed to set up acquisition.");
- devc->acquisition = NULL;
- lwla_free_acquisition_state(acq);
- return ret;
- }
-
- ret = lwla_start_acquisition(sdi);
- if (ret != SR_OK) {
- sr_err("Failed to start acquisition.");
- devc->acquisition = NULL;
- lwla_free_acquisition_state(acq);
- return ret;
- }
- usb_source_add(sdi->session, drvc->sr_ctx, 100, &lwla_receive_data,
- (struct sr_dev_inst *)sdi);
-
- sr_info("Waiting for data.");
-
- /* Send header packet to the session bus. */
- std_session_send_df_header(sdi, LOG_PREFIX);
-
- return SR_OK;
+ return lwla_start_acquisition(sdi);
}
+/* Request that a running capture operation be stopped.
+ */
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
- if (devc->acquisition && !devc->cancel_requested) {
+ if (devc->state != STATE_IDLE && !devc->cancel_requested) {
devc->cancel_requested = TRUE;
sr_dbg("Stopping acquisition.");
}
return SR_OK;
}
+/* SysClk LWLA driver descriptor.
+ */
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info = {
.name = "sysclk-lwla",
.longname = "SysClk LWLA series",
.api_version = 1,
.init = init,
- .cleanup = cleanup,
+ .cleanup = dev_clear,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
sr_info("Downloading FPGA bitstream '%s'.", name);
/* Transfer the entire bitstream in one URB. */
- ret = libusb_bulk_transfer(usb->devhdl, EP_BITSTREAM,
+ ret = libusb_bulk_transfer(usb->devhdl, EP_CONFIG,
stream, length, &xfer_len, USB_TIMEOUT_MS);
g_free(stream);
return ret;
}
-SR_PRIV int lwla_read_long_reg(const struct sr_usb_dev_inst *usb,
- uint32_t addr, uint64_t *value)
-{
- uint32_t low, high, dummy;
- int ret;
-
- ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
- if (ret != SR_OK)
- return ret;
-
- ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
- if (ret != SR_OK)
- return ret;
-
- ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
- if (ret != SR_OK)
- return ret;
-
- ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
- if (ret != SR_OK)
- return ret;
-
- *value = ((uint64_t)high << 32) | low;
-
- return SR_OK;
-}
-
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
uint16_t reg, uint32_t value)
{
}
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
- const struct regval_pair *regvals, int count)
+ const struct regval *regvals, int count)
{
int i;
int ret;
#define LWLA_WORD_2(val) GUINT16_TO_LE(((val) >> 48) & 0xFFFF)
#define LWLA_WORD_3(val) GUINT16_TO_LE(((val) >> 32) & 0xFFFF)
+/* Maximum number of 16-bit words sent at a time during acquisition.
+ * Used for allocating the libusb transfer buffer.
+ */
+#define MAX_ACQ_SEND_LEN16 64 /* 43 for capture setup plus stuffing */
+
+/* Maximum number of 32-bit words received at a time during acquisition.
+ * This is a multiple of the endpoint buffer size to avoid transfer overflow
+ * conditions.
+ */
+#define MAX_ACQ_RECV_LEN32 (2 * 512 / 4)
+
+/* Maximum length of a register read/write sequence.
+ */
+#define MAX_REG_SEQ_LEN 16
+
+/* Logic datafeed packet size in bytes.
+ * This is a multiple of both 4 and 5 to match any model's unit size
+ * and memory granularity.
+ */
+#define PACKET_SIZE (5000 * 4 * 5)
+
/** USB device end points.
*/
-enum {
- EP_COMMAND = 2,
- EP_BITSTREAM = 4,
- EP_REPLY = 6 | LIBUSB_ENDPOINT_IN
+enum usb_endpoint {
+ EP_COMMAND = 2,
+ EP_CONFIG = 4,
+ EP_REPLY = 6 | LIBUSB_ENDPOINT_IN
};
/** LWLA protocol command ID codes.
*/
-enum {
+enum command_id {
CMD_READ_REG = 1,
CMD_WRITE_REG = 2,
- CMD_READ_MEM = 6,
- CMD_CAP_SETUP = 7,
- CMD_CAP_STATUS = 8,
+ CMD_READ_MEM32 = 3,
+ CMD_READ_MEM36 = 6,
+ CMD_WRITE_LREGS = 7,
+ CMD_READ_LREGS = 8,
};
/** LWLA capture state flags.
+ * The bit positions are the same as in the LWLA1016 control register.
*/
enum {
- STATUS_CAPTURING = 1 << 1,
- STATUS_TRIGGERED = 1 << 4,
- STATUS_MEM_AVAIL = 1 << 5,
- STATUS_FLAG_MASK = 0x3F
+ STATUS_CAPTURING = 1 << 2,
+ STATUS_TRIGGERED = 1 << 5,
+ STATUS_MEM_AVAIL = 1 << 6,
};
-/** LWLA1034 register addresses.
+/** LWLA1034 run-length encoding states.
*/
-enum {
- REG_MEM_CTRL = 0x1074, /* capture buffer control */
- REG_MEM_FILL = 0x1078, /* capture buffer fill level */
- REG_MEM_START = 0x107C, /* capture buffer start address */
-
- REG_DIV_BYPASS = 0x1094, /* bypass clock divider flag */
-
- REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
- REG_LONG_ADDR = 0x10B4, /* long register address */
- REG_LONG_LOW = 0x10B8, /* long register low word */
- REG_LONG_HIGH = 0x10BC, /* long register high word */
-
- REG_FREQ_CH1 = 0x10C0, /* channel 1 live frequency */
- REG_FREQ_CH2 = 0x10C4, /* channel 2 live frequency */
- REG_FREQ_CH3 = 0x10C8, /* channel 3 live frequency */
- REG_FREQ_CH4 = 0x10CC, /* channel 4 live frequency */
-};
-
-/** Flag bits for REG_MEM_CTRL.
- */
-enum {
- MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
- MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
+enum rle_state {
+ RLE_STATE_DATA,
+ RLE_STATE_LEN
};
-/* LWLA1034 long register addresses.
+/** Register address/value pair.
*/
-enum {
- LREG_CAP_CTRL = 10, /* capture control bits */
- LREG_TEST_ID = 100, /* constant test ID */
+struct regval {
+ unsigned int reg;
+ uint32_t val;
};
-/** Flag bits for LREG_CAP_CTRL.
+/** LWLA sample acquisition and decompression state.
*/
-enum {
- CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
- CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
- CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
- CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
- CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
+struct acquisition_state {
+ uint64_t samples_max; /* maximum number of samples to process */
+ uint64_t samples_done; /* number of samples sent to the session bus */
+ uint64_t duration_max; /* maximum capture duration in milliseconds */
+ uint64_t duration_now; /* running capture duration since trigger */
+
+ uint64_t sample; /* last sample read from capture memory */
+ uint64_t run_len; /* remaining run length of current sample */
+
+ struct libusb_transfer *xfer_in; /* USB in transfer record */
+ struct libusb_transfer *xfer_out; /* USB out transfer record */
+
+ size_t mem_addr_fill; /* capture memory fill level */
+ size_t mem_addr_done; /* position up to which data was received */
+ size_t mem_addr_next; /* start address for next async read */
+ size_t mem_addr_stop; /* end of memory range to be read */
+ size_t in_index; /* position in read transfer buffer */
+ size_t out_index; /* position in logic packet buffer */
+ enum rle_state rle; /* RLE decoding state */
+
+ gboolean rle_enabled; /* capturing in timing-state mode */
+ gboolean clock_boost; /* switch to faster clock during capture */
+ unsigned int status; /* last received device status */
+
+ unsigned int reg_seq_pos; /* index of next register/value pair */
+ unsigned int reg_seq_len; /* length of register/value sequence */
+
+ struct regval reg_sequence[MAX_REG_SEQ_LEN]; /* register buffer */
+ uint32_t xfer_buf_in[MAX_ACQ_RECV_LEN32]; /* USB in buffer */
+ uint16_t xfer_buf_out[MAX_ACQ_SEND_LEN16]; /* USB out buffer */
+ uint8_t out_packet[PACKET_SIZE]; /* logic payload */
};
-/** Register/value pair.
- */
-struct regval_pair {
- unsigned int reg;
- unsigned int val;
-};
+static inline void lwla_queue_regval(struct acquisition_state *acq,
+ unsigned int reg, uint32_t value)
+{
+ acq->reg_sequence[acq->reg_seq_len].reg = reg;
+ acq->reg_sequence[acq->reg_seq_len].val = value;
+ acq->reg_seq_len++;
+}
SR_PRIV int lwla_send_bitstream(struct sr_context *ctx,
const struct sr_usb_dev_inst *usb,
SR_PRIV int lwla_read_reg(const struct sr_usb_dev_inst *usb,
uint16_t reg, uint32_t *value);
-SR_PRIV int lwla_read_long_reg(const struct sr_usb_dev_inst *usb,
- uint32_t addr, uint64_t *value);
-
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
uint16_t reg, uint32_t value);
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
- const struct regval_pair *regvals, int count);
+ const struct regval *regvals, int count);
#endif
--- /dev/null
+/*
+ * This file is part of the libsigrok project.
+ *
+ * Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <config.h>
+#include "lwla.h"
+#include "protocol.h"
+
+/* Number of logic channels.
+ */
+#define NUM_CHANNELS 16
+
+/* Unit size for the sigrok logic datafeed.
+ */
+#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
+
+/* Size of the acquisition buffer in device memory units.
+ */
+#define MEMORY_DEPTH (256 * 1024) /* 256k x 32 bit */
+
+/* Capture memory read start address.
+ */
+#define READ_START_ADDR 2
+
+/* Number of device memory units (32 bit) to read at a time.
+ */
+#define READ_CHUNK_LEN32 250
+
+/** LWLA1016 register addresses.
+ */
+enum reg_addr {
+ REG_CHAN_MASK = 0x1000, /* bit mask of enabled channels */
+
+ REG_DURATION = 0x1010, /* capture duration in ms */
+
+ REG_MEM_WR_PTR = 0x1070,
+ REG_MEM_RD_PTR = 0x1074,
+ REG_MEM_DATA = 0x1078,
+ REG_MEM_CTRL = 0x107C,
+
+ REG_CAP_COUNT = 0x10B0,
+
+ REG_TEST_ID = 0x10B4, /* read */
+ REG_TRG_SEL = 0x10B4, /* write */
+
+ REG_CAP_CTRL = 0x10B8,
+
+ REG_CAP_TOTAL = 0x10BC, /* read */
+ REG_DIV_COUNT = 0x10BC, /* write */
+};
+
+/** Flag bits for REG_MEM_CTRL.
+ */
+enum mem_ctrl_flag {
+ MEM_CTRL_RESET = 1 << 0,
+ MEM_CTRL_WRITE = 1 << 1,
+};
+
+/** Flag bits for REG_CAP_CTRL.
+ */
+enum cap_ctrl_flag {
+ CAP_CTRL_FIFO32_FULL = 1 << 0, /* "fifo32_ful" bit */
+ CAP_CTRL_FIFO64_FULL = 1 << 1, /* "fifo64_ful" bit */
+ CAP_CTRL_TRG_EN = 1 << 2, /* "trg_en" bit */
+ CAP_CTRL_CLR_TIMEBASE = 1 << 3, /* "do_clr_timebase" bit */
+ CAP_CTRL_FIFO_EMPTY = 1 << 4, /* "fifo_empty" bit */
+ CAP_CTRL_SAMPLE_EN = 1 << 5, /* "sample_en" bit */
+ CAP_CTRL_CNTR_NOT_ENDR = 1 << 6, /* "cntr_not_endr" bit */
+};
+
+/* Available FPGA configurations.
+ */
+enum fpga_config {
+ FPGA_100 = 0, /* 100 MS/s, no compression */
+ FPGA_100_TS, /* 100 MS/s, timing-state mode */
+};
+
+/* FPGA bitstream resource filenames.
+ */
+static const char bitstream_map[][32] = {
+ [FPGA_100] = "sysclk-lwla1016-100.rbf",
+ [FPGA_100_TS] = "sysclk-lwla1016-100-ts.rbf",
+};
+
+/* Demangle incoming sample data from the transfer buffer.
+ */
+static void read_response(struct acquisition_state *acq)
+{
+ uint32_t *in_p, *out_p;
+ size_t words_left, num_words;
+ size_t max_samples, run_samples;
+ size_t i;
+
+ words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
+ - acq->mem_addr_done;
+ /* Calculate number of samples to write into packet. */
+ max_samples = MIN(acq->samples_max - acq->samples_done,
+ PACKET_SIZE / UNIT_SIZE - acq->out_index);
+ run_samples = MIN(max_samples, 2 * words_left);
+
+ /* Round up in case the samples limit is an odd number. */
+ num_words = (run_samples + 1) / 2;
+ /*
+ * Without RLE the output index will always be a multiple of two
+ * samples (at least before reaching the samples limit), thus 32-bit
+ * alignment is guaranteed.
+ */
+ out_p = (uint32_t *)&acq->out_packet[acq->out_index * UNIT_SIZE];
+ in_p = &acq->xfer_buf_in[acq->in_index];
+ /*
+ * Transfer two samples at a time, taking care to swap the 16-bit
+ * halves of each input word but keeping the samples themselves in
+ * the original Little Endian order.
+ */
+ for (i = 0; i < num_words; i++)
+ out_p[i] = LROTATE(in_p[i], 16);
+
+ acq->in_index += num_words;
+ acq->mem_addr_done += num_words;
+ acq->out_index += run_samples;
+ acq->samples_done += run_samples;
+}
+
+/* Demangle and decompress incoming sample data from the transfer buffer.
+ */
+static void read_response_rle(struct acquisition_state *acq)
+{
+ uint32_t *in_p;
+ uint16_t *out_p;
+ size_t words_left;
+ size_t max_samples, run_samples;
+ size_t wi, ri;
+ uint32_t word;
+ uint16_t sample;
+
+ words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
+ - acq->mem_addr_done;
+ in_p = &acq->xfer_buf_in[acq->in_index];
+
+ for (wi = 0;; wi++) {
+ /* Calculate number of samples to write into packet. */
+ max_samples = MIN(acq->samples_max - acq->samples_done,
+ PACKET_SIZE / UNIT_SIZE - acq->out_index);
+ run_samples = MIN(max_samples, acq->run_len);
+
+ /* Expand run-length samples into session packet. */
+ sample = acq->sample;
+ out_p = &((uint16_t *)acq->out_packet)[acq->out_index];
+
+ for (ri = 0; ri < run_samples; ri++)
+ out_p[ri] = GUINT16_TO_LE(sample);
+
+ acq->run_len -= run_samples;
+ acq->out_index += run_samples;
+ acq->samples_done += run_samples;
+
+ if (run_samples == max_samples)
+ break; /* packet full or sample limit reached */
+ if (wi >= words_left)
+ break; /* done with current transfer */
+
+ word = GUINT32_FROM_LE(in_p[wi]);
+ acq->sample = word >> 16;
+ acq->run_len = (word & 0xFFFF) + 1;
+ }
+ acq->in_index += wi;
+ acq->mem_addr_done += wi;
+}
+
+/* Select and transfer FPGA bitstream for the current configuration.
+ */
+static int apply_fpga_config(const struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ struct drv_context *drvc;
+ int config;
+ int ret;
+
+ devc = sdi->priv;
+ drvc = sdi->driver->context;
+
+ if (sdi->status == SR_ST_INACTIVE)
+ return SR_OK; /* the LWLA1016 has no off state */
+
+ config = (devc->cfg_rle) ? FPGA_100_TS : FPGA_100;
+
+ if (config == devc->active_fpga_config)
+ return SR_OK; /* no change */
+
+ ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
+ bitstream_map[config]);
+ devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
+
+ return ret;
+}
+
+/* Perform initialization self test.
+ */
+static int device_init_check(const struct sr_dev_inst *sdi)
+{
+ uint32_t value;
+ int ret;
+
+ ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
+ if (ret != SR_OK)
+ return ret;
+
+ /* Ignore the value returned by the first read. */
+ ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
+ if (ret != SR_OK)
+ return ret;
+
+ if (value != 0x12345678) {
+ sr_err("Received invalid test word 0x%08X.", value);
+ return SR_ERR;
+ }
+ return SR_OK;
+}
+
+static int setup_acquisition(const struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ struct sr_usb_dev_inst *usb;
+ struct acquisition_state *acq;
+ uint32_t divider_count;
+ int ret;
+
+ devc = sdi->priv;
+ usb = sdi->conn;
+ acq = devc->acquisition;
+
+ acq->reg_seq_pos = 0;
+ acq->reg_seq_len = 0;
+
+ lwla_queue_regval(acq, REG_CHAN_MASK, devc->channel_mask);
+
+ if (devc->samplerate > 0 && devc->samplerate < SR_MHZ(100))
+ divider_count = SR_MHZ(100) / devc->samplerate - 1;
+ else
+ divider_count = 0;
+
+ lwla_queue_regval(acq, REG_DIV_COUNT, divider_count);
+
+ lwla_queue_regval(acq, REG_CAP_CTRL, 0);
+ lwla_queue_regval(acq, REG_DURATION, 0);
+
+ lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
+ lwla_queue_regval(acq, REG_MEM_CTRL, 0);
+ lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
+
+ lwla_queue_regval(acq, REG_CAP_CTRL,
+ CAP_CTRL_FIFO32_FULL | CAP_CTRL_FIFO64_FULL);
+
+ lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_FIFO_EMPTY);
+ lwla_queue_regval(acq, REG_CAP_CTRL, 0);
+
+ lwla_queue_regval(acq, REG_CAP_COUNT, MEMORY_DEPTH - 5);
+
+ lwla_queue_regval(acq, REG_TRG_SEL,
+ ((devc->trigger_edge_mask & 0xFFFF) << 16)
+ | (devc->trigger_values & 0xFFFF));
+
+ ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
+ acq->reg_seq_len = 0;
+
+ return ret;
+}
+
+static int prepare_request(const struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ struct acquisition_state *acq;
+ size_t count;
+
+ devc = sdi->priv;
+ acq = devc->acquisition;
+
+ acq->xfer_out->length = 0;
+ acq->reg_seq_pos = 0;
+ acq->reg_seq_len = 0;
+
+ switch (devc->state) {
+ case STATE_START_CAPTURE:
+ lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_TRG_EN
+ | ((devc->trigger_mask & 0xFFFF) << 16));
+ break;
+ case STATE_STOP_CAPTURE:
+ lwla_queue_regval(acq, REG_CAP_CTRL, 0);
+ lwla_queue_regval(acq, REG_DIV_COUNT, 0);
+ break;
+ case STATE_READ_PREPARE:
+ lwla_queue_regval(acq, REG_MEM_CTRL, 0);
+ break;
+ case STATE_READ_FINISH:
+ lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
+ lwla_queue_regval(acq, REG_MEM_CTRL, 0);
+ break;
+ case STATE_STATUS_REQUEST:
+ lwla_queue_regval(acq, REG_CAP_CTRL, 0);
+ lwla_queue_regval(acq, REG_MEM_WR_PTR, 0);
+ lwla_queue_regval(acq, REG_DURATION, 0);
+ break;
+ case STATE_LENGTH_REQUEST:
+ lwla_queue_regval(acq, REG_CAP_COUNT, 0);
+ break;
+ case STATE_READ_REQUEST:
+ /* Always read a multiple of 8 device words. */
+ count = MIN(READ_CHUNK_LEN32,
+ acq->mem_addr_stop - acq->mem_addr_next);
+
+ acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM32);
+ acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
+ acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
+ acq->xfer_buf_out[3] = LWLA_WORD_0(count);
+ acq->xfer_buf_out[4] = LWLA_WORD_1(count);
+ acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
+
+ acq->mem_addr_next += count;
+ break;
+ default:
+ sr_err("BUG: unhandled request state %d.", devc->state);
+ return SR_ERR_BUG;
+ }
+
+ return SR_OK;
+}
+
+static int handle_response(const struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ struct acquisition_state *acq;
+ int expect_len;
+
+ devc = sdi->priv;
+ acq = devc->acquisition;
+
+ switch (devc->state) {
+ case STATE_STATUS_REQUEST:
+ acq->status = acq->reg_sequence[0].val & 0x7F;
+ acq->mem_addr_fill = acq->reg_sequence[1].val;
+ acq->duration_now = acq->reg_sequence[2].val;
+ break;
+ case STATE_LENGTH_REQUEST:
+ acq->mem_addr_next = READ_START_ADDR;
+ acq->mem_addr_stop = acq->reg_sequence[0].val + READ_START_ADDR - 1;
+ break;
+ case STATE_READ_REQUEST:
+ expect_len = (acq->mem_addr_next - acq->mem_addr_done
+ + acq->in_index) * sizeof(acq->xfer_buf_in[0]);
+ if (acq->xfer_in->actual_length != expect_len) {
+ sr_err("Received size %d does not match expected size %d.",
+ acq->xfer_in->actual_length, expect_len);
+ devc->transfer_error = TRUE;
+ return SR_ERR;
+ }
+ if (acq->rle_enabled)
+ read_response_rle(acq);
+ else
+ read_response(acq);
+ break;
+ default:
+ sr_err("BUG: unhandled response state %d.", devc->state);
+ return SR_ERR_BUG;
+ }
+
+ return SR_OK;
+}
+
+/* Model descriptor for the LWLA1016.
+ */
+SR_PRIV const struct model_info lwla1016_info = {
+ .name = "LWLA1016",
+ .num_channels = NUM_CHANNELS,
+
+ .num_devopts = 5,
+ .devopts = {
+ SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
+ SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
+ SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
+ SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
+ SR_CONF_RLE | SR_CONF_GET | SR_CONF_SET,
+ },
+ .num_samplerates = 19,
+ .samplerates = {
+ SR_MHZ(100),
+ SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
+ SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
+ SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
+ SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
+ SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
+ SR_HZ(500), SR_HZ(200), SR_HZ(100),
+ },
+
+ .apply_fpga_config = &apply_fpga_config,
+ .device_init_check = &device_init_check,
+ .setup_acquisition = &setup_acquisition,
+
+ .prepare_request = &prepare_request,
+ .handle_response = &handle_response,
+};
--- /dev/null
+/*
+ * This file is part of the libsigrok project.
+ *
+ * Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <config.h>
+#include "lwla.h"
+#include "protocol.h"
+
+/* Number of logic channels.
+ */
+#define NUM_CHANNELS 34
+
+/* Bit mask covering all logic channels.
+ */
+#define ALL_CHANNELS_MASK ((UINT64_C(1) << NUM_CHANNELS) - 1)
+
+/* Unit size for the sigrok logic datafeed.
+ */
+#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
+
+/* Size of the acquisition buffer in device memory units.
+ */
+#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
+
+/* Capture memory read start address.
+ */
+#define READ_START_ADDR 4
+
+/* Number of device memory units (36 bit) to read at a time. Slices of 8
+ * consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
+ * length should be a multiple of 8 to ensure alignment to slice boundaries.
+ *
+ * Experimentation has shown that reading chunks larger than about 1024 bytes
+ * is unreliable. The threshold seems to relate to the buffer size on the FX2
+ * USB chip: The configured endpoint buffer size is 512, and with double or
+ * triple buffering enabled a multiple of 512 bytes can be kept in fly.
+ *
+ * The vendor software limits reads to 120 words (15 slices, 540 bytes) at
+ * a time. So far, it appears safe to increase this to 224 words (28 slices,
+ * 1008 bytes), thus making the most of two 512 byte buffers.
+ */
+#define READ_CHUNK_LEN36 (28 * 8)
+
+/* Bit mask for the RLE repeat-count-follows flag. */
+#define RLE_FLAG_LEN_FOLLOWS (UINT64_C(1) << 35)
+
+/** LWLA1034 register addresses.
+ */
+enum reg_addr {
+ REG_MEM_CTRL = 0x1074, /* capture buffer control */
+ REG_MEM_FILL = 0x1078, /* capture buffer fill level */
+ REG_MEM_START = 0x107C, /* capture buffer start address */
+
+ REG_CLK_BOOST = 0x1094, /* logic clock boost flag */
+
+ REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
+ REG_LONG_ADDR = 0x10B4, /* long register address */
+ REG_LONG_LOW = 0x10B8, /* long register low word */
+ REG_LONG_HIGH = 0x10BC, /* long register high word */
+};
+
+/** Flag bits for REG_MEM_CTRL.
+ */
+enum mem_ctrl_flag {
+ MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
+ MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
+};
+
+/* LWLA1034 long register addresses.
+ */
+enum long_reg_addr {
+ LREG_CHAN_MASK = 0, /* channel enable mask */
+ LREG_DIV_COUNT = 1, /* clock divider max count */
+ LREG_TRG_VALUE = 2, /* trigger level/slope bits */
+ LREG_TRG_TYPE = 3, /* trigger type bits (level or edge) */
+ LREG_TRG_ENABLE = 4, /* trigger enable mask */
+ LREG_MEM_FILL = 5, /* capture memory fill level or limit */
+
+ LREG_DURATION = 7, /* elapsed time in ms (0.8 ms at 125 MS/s) */
+ LREG_CHAN_STATE = 8, /* current logic levels at the inputs */
+ LREG_STATUS = 9, /* capture status flags */
+
+ LREG_CAP_CTRL = 10, /* capture control bits */
+ LREG_TEST_ID = 100, /* constant test ID */
+};
+
+/** Flag bits for LREG_CAP_CTRL.
+ */
+enum cap_ctrl_flag {
+ CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
+ CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
+ CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
+ CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
+ CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
+};
+
+/* Available FPGA configurations.
+ */
+enum fpga_config {
+ FPGA_OFF = 0, /* FPGA shutdown config */
+ FPGA_INT, /* internal clock config */
+ FPGA_EXTPOS, /* external clock, rising edge config */
+ FPGA_EXTNEG, /* external clock, falling edge config */
+};
+
+/* FPGA bitstream resource filenames.
+ */
+static const char bitstream_map[][32] = {
+ [FPGA_OFF] = "sysclk-lwla1034-off.rbf",
+ [FPGA_INT] = "sysclk-lwla1034-int.rbf",
+ [FPGA_EXTPOS] = "sysclk-lwla1034-extpos.rbf",
+ [FPGA_EXTNEG] = "sysclk-lwla1034-extneg.rbf",
+};
+
+/* Read 64-bit long register.
+ */
+static int read_long_reg(const struct sr_usb_dev_inst *usb,
+ uint32_t addr, uint64_t *value)
+{
+ uint32_t low, high, dummy;
+ int ret;
+
+ ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
+ if (ret != SR_OK)
+ return ret;
+
+ ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
+ if (ret != SR_OK)
+ return ret;
+
+ ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
+ if (ret != SR_OK)
+ return ret;
+
+ ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
+ if (ret != SR_OK)
+ return ret;
+
+ *value = ((uint64_t)high << 32) | low;
+
+ return SR_OK;
+}
+
+/* Queue access sequence for a long register write.
+ */
+static void queue_long_regval(struct acquisition_state *acq,
+ uint32_t addr, uint64_t value)
+{
+ lwla_queue_regval(acq, REG_LONG_ADDR, addr);
+ lwla_queue_regval(acq, REG_LONG_LOW, value & 0xFFFFFFFF);
+ lwla_queue_regval(acq, REG_LONG_HIGH, value >> 32);
+ lwla_queue_regval(acq, REG_LONG_STROBE, 0);
+}
+
+/* Helper to fill in the long register bulk write command.
+ */
+static inline void bulk_long_set(struct acquisition_state *acq,
+ size_t idx, uint64_t value)
+{
+ acq->xfer_buf_out[4 * idx + 3] = LWLA_WORD_0(value);
+ acq->xfer_buf_out[4 * idx + 4] = LWLA_WORD_1(value);
+ acq->xfer_buf_out[4 * idx + 5] = LWLA_WORD_2(value);
+ acq->xfer_buf_out[4 * idx + 6] = LWLA_WORD_3(value);
+}
+
+/* Helper for dissecting the response to a long register bulk read.
+ */
+static inline uint64_t bulk_long_get(const struct acquisition_state *acq,
+ size_t idx)
+{
+ uint64_t low, high;
+
+ low = LWLA_TO_UINT32(acq->xfer_buf_in[2 * idx]);
+ high = LWLA_TO_UINT32(acq->xfer_buf_in[2 * idx + 1]);
+
+ return (high << 32) | low;
+}
+
+/* Demangle and decompress incoming sample data from the transfer buffer.
+ * The data chunk is taken from the acquisition state, and is expected to
+ * contain a multiple of 8 packed 36-bit words.
+ */
+static void read_response(struct acquisition_state *acq)
+{
+ uint64_t sample, high_nibbles, word;
+ uint32_t *slice;
+ uint8_t *out_p;
+ size_t words_left;
+ size_t max_samples, run_samples;
+ size_t wi, ri, si;
+
+ /* Number of 36-bit words remaining in the transfer buffer. */
+ words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
+ - acq->mem_addr_done;
+
+ for (wi = 0;; wi++) {
+ /* Calculate number of samples to write into packet. */
+ max_samples = MIN(acq->samples_max - acq->samples_done,
+ PACKET_SIZE / UNIT_SIZE - acq->out_index);
+ run_samples = MIN(max_samples, acq->run_len);
+
+ /* Expand run-length samples into session packet. */
+ sample = acq->sample;
+ out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
+
+ for (ri = 0; ri < run_samples; ri++) {
+ out_p[0] = sample & 0xFF;
+ out_p[1] = (sample >> 8) & 0xFF;
+ out_p[2] = (sample >> 16) & 0xFF;
+ out_p[3] = (sample >> 24) & 0xFF;
+ out_p[4] = (sample >> 32) & 0xFF;
+ out_p += UNIT_SIZE;
+ }
+ acq->run_len -= run_samples;
+ acq->out_index += run_samples;
+ acq->samples_done += run_samples;
+
+ if (run_samples == max_samples)
+ break; /* packet full or sample limit reached */
+ if (wi >= words_left)
+ break; /* done with current transfer */
+
+ /* Get the current slice of 8 packed 36-bit words. */
+ slice = &acq->xfer_buf_in[(acq->in_index + wi) / 8 * 9];
+ si = (acq->in_index + wi) % 8; /* word index within slice */
+
+ /* Extract the next 36-bit word. */
+ high_nibbles = LWLA_TO_UINT32(slice[8]);
+ word = LWLA_TO_UINT32(slice[si]);
+ word |= (high_nibbles << (4 * si + 4)) & (UINT64_C(0xF) << 32);
+
+ if (acq->rle == RLE_STATE_DATA) {
+ acq->sample = word & ALL_CHANNELS_MASK;
+ acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
+ acq->rle = ((word & RLE_FLAG_LEN_FOLLOWS) != 0)
+ ? RLE_STATE_LEN : RLE_STATE_DATA;
+ } else {
+ acq->run_len += word << 1;
+ acq->rle = RLE_STATE_DATA;
+ }
+ }
+ acq->in_index += wi;
+ acq->mem_addr_done += wi;
+}
+
+/* Select and transfer FPGA bitstream for the current configuration.
+ */
+static int apply_fpga_config(const struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ struct drv_context *drvc;
+ int config;
+ int ret;
+
+ devc = sdi->priv;
+ drvc = sdi->driver->context;
+
+ if (sdi->status == SR_ST_INACTIVE)
+ config = FPGA_OFF;
+ else if (devc->cfg_clock_source == CLOCK_INTERNAL)
+ config = FPGA_INT;
+ else if (devc->cfg_clock_edge == EDGE_POSITIVE)
+ config = FPGA_EXTPOS;
+ else
+ config = FPGA_EXTNEG;
+
+ if (config == devc->active_fpga_config)
+ return SR_OK; /* no change */
+
+ ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
+ bitstream_map[config]);
+ devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
+
+ return ret;
+}
+
+/* Perform initialization self test.
+ */
+static int device_init_check(const struct sr_dev_inst *sdi)
+{
+ uint64_t value;
+ int ret;
+
+ ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
+ if (ret != SR_OK)
+ return ret;
+
+ /* Ignore the value returned by the first read. */
+ ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
+ if (ret != SR_OK)
+ return ret;
+
+ if (value != UINT64_C(0x1234567887654321)) {
+ sr_err("Received invalid test word 0x%016" PRIX64 ".", value);
+ return SR_ERR;
+ }
+ return SR_OK;
+}
+
+/* Set up the device in preparation for an acquisition session.
+ */
+static int setup_acquisition(const struct sr_dev_inst *sdi)
+{
+ uint64_t divider_count;
+ uint64_t trigger_mask;
+ struct dev_context *devc;
+ struct sr_usb_dev_inst *usb;
+ struct acquisition_state *acq;
+ int ret;
+
+ devc = sdi->priv;
+ usb = sdi->conn;
+ acq = devc->acquisition;
+
+ acq->reg_seq_pos = 0;
+ acq->reg_seq_len = 0;
+
+ lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
+ lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
+
+ queue_long_regval(acq, LREG_CAP_CTRL,
+ CAP_CTRL_CLR_TIMEBASE | CAP_CTRL_FLUSH_FIFO |
+ CAP_CTRL_CLR_FIFOFULL | CAP_CTRL_CLR_COUNTER);
+
+ lwla_queue_regval(acq, REG_CLK_BOOST, acq->clock_boost);
+
+ ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
+ acq->reg_seq_len = 0;
+
+ if (ret != SR_OK)
+ return ret;
+
+ acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_LREGS);
+ acq->xfer_buf_out[1] = LWLA_WORD(0);
+ acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
+
+ bulk_long_set(acq, LREG_CHAN_MASK, devc->channel_mask);
+
+ if (devc->samplerate > 0 && devc->samplerate <= SR_MHZ(100)
+ && !acq->clock_boost)
+ divider_count = SR_MHZ(100) / devc->samplerate - 1;
+ else
+ divider_count = 0;
+
+ bulk_long_set(acq, LREG_DIV_COUNT, divider_count);
+ bulk_long_set(acq, LREG_TRG_VALUE, devc->trigger_values);
+ bulk_long_set(acq, LREG_TRG_TYPE, devc->trigger_edge_mask);
+
+ trigger_mask = devc->trigger_mask;
+
+ /* Set bits to select external TRG input edge. */
+ if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
+ switch (devc->cfg_trigger_slope) {
+ case EDGE_POSITIVE:
+ trigger_mask |= UINT64_C(1) << 35;
+ break;
+ case EDGE_NEGATIVE:
+ trigger_mask |= UINT64_C(1) << 34;
+ break;
+ }
+
+ bulk_long_set(acq, LREG_TRG_ENABLE, trigger_mask);
+
+ /* Set the capture memory full threshold. This is slightly less
+ * than the actual maximum, most likely in order to compensate for
+ * pipeline latency.
+ */
+ bulk_long_set(acq, LREG_MEM_FILL, MEMORY_DEPTH - 16);
+
+ /* Fill remaining words with zeroes. */
+ bulk_long_set(acq, 6, 0);
+ bulk_long_set(acq, LREG_DURATION, 0);
+ bulk_long_set(acq, LREG_CHAN_STATE, 0);
+ bulk_long_set(acq, LREG_STATUS, 0);
+
+ return lwla_send_command(sdi->conn, acq->xfer_buf_out,
+ 3 + (LREG_STATUS + 1) * 4);
+}
+
+static int prepare_request(const struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ struct acquisition_state *acq;
+ size_t count;
+
+ devc = sdi->priv;
+ acq = devc->acquisition;
+
+ acq->xfer_out->length = 0;
+ acq->reg_seq_pos = 0;
+ acq->reg_seq_len = 0;
+
+ switch (devc->state) {
+ case STATE_START_CAPTURE:
+ queue_long_regval(acq, LREG_CAP_CTRL, CAP_CTRL_TRG_EN);
+ break;
+ case STATE_STOP_CAPTURE:
+ queue_long_regval(acq, LREG_CAP_CTRL, 0);
+ lwla_queue_regval(acq, REG_CLK_BOOST, 0);
+ break;
+ case STATE_READ_PREPARE:
+ lwla_queue_regval(acq, REG_CLK_BOOST, 1);
+ lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
+ lwla_queue_regval(acq, REG_MEM_START, READ_START_ADDR);
+ break;
+ case STATE_READ_FINISH:
+ lwla_queue_regval(acq, REG_CLK_BOOST, 0);
+ break;
+ case STATE_STATUS_REQUEST:
+ acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_LREGS);
+ acq->xfer_buf_out[1] = LWLA_WORD(0);
+ acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
+ acq->xfer_out->length = 3 * sizeof(acq->xfer_buf_out[0]);
+ break;
+ case STATE_LENGTH_REQUEST:
+ lwla_queue_regval(acq, REG_MEM_FILL, 0);
+ break;
+ case STATE_READ_REQUEST:
+ /* Always read a multiple of 8 device words. */
+ count = MIN(READ_CHUNK_LEN36, acq->mem_addr_stop
+ - acq->mem_addr_next + 7) / 8 * 8;
+
+ acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM36);
+ acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
+ acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
+ acq->xfer_buf_out[3] = LWLA_WORD_0(count);
+ acq->xfer_buf_out[4] = LWLA_WORD_1(count);
+ acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
+
+ acq->mem_addr_next += count;
+ break;
+ default:
+ sr_err("BUG: unhandled request state %d.", devc->state);
+ return SR_ERR_BUG;
+ }
+
+ return SR_OK;
+}
+
+static int handle_response(const struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ struct acquisition_state *acq;
+ int expect_len;
+
+ devc = sdi->priv;
+ acq = devc->acquisition;
+
+ switch (devc->state) {
+ case STATE_STATUS_REQUEST:
+ if (acq->xfer_in->actual_length != (LREG_STATUS + 1) * 8) {
+ sr_err("Received size %d doesn't match expected size %d.",
+ acq->xfer_in->actual_length, (LREG_STATUS + 1) * 8);
+ return SR_ERR;
+ }
+ acq->mem_addr_fill = bulk_long_get(acq, LREG_MEM_FILL) & 0xFFFFFFFF;
+ acq->duration_now = bulk_long_get(acq, LREG_DURATION);
+ /* Shift left by one so the bit positions match the LWLA1016. */
+ acq->status = (bulk_long_get(acq, LREG_STATUS) & 0x3F) << 1;
+ /*
+ * It seems that the 125 MS/s mode is implemented simply by
+ * running the FPGA logic at a 25% higher clock rate. As a
+ * result, the millisecond counter for the capture duration
+ * is also off by 25%, and thus needs to be corrected here.
+ */
+ if (acq->clock_boost)
+ acq->duration_now = acq->duration_now * 4 / 5;
+ break;
+ case STATE_LENGTH_REQUEST:
+ acq->mem_addr_next = READ_START_ADDR;
+ acq->mem_addr_stop = acq->reg_sequence[0].val;
+ break;
+ case STATE_READ_REQUEST:
+ /* Expect a multiple of 8 36-bit words packed into 9 32-bit
+ * words. */
+ expect_len = (acq->mem_addr_next - acq->mem_addr_done
+ + acq->in_index + 7) / 8 * 9 * sizeof(acq->xfer_buf_in[0]);
+
+ if (acq->xfer_in->actual_length != expect_len) {
+ sr_err("Received size %d does not match expected size %d.",
+ acq->xfer_in->actual_length, expect_len);
+ devc->transfer_error = TRUE;
+ return SR_ERR;
+ }
+ read_response(acq);
+ break;
+ default:
+ sr_err("BUG: unhandled response state %d.", devc->state);
+ return SR_ERR_BUG;
+ }
+
+ return SR_OK;
+}
+
+/** Model descriptor for the LWLA1034.
+ */
+SR_PRIV const struct model_info lwla1034_info = {
+ .name = "LWLA1034",
+ .num_channels = NUM_CHANNELS,
+
+ .num_devopts = 8,
+ .devopts = {
+ SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
+ SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
+ SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
+ SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
+ SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
+ SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
+ SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
+ SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
+ },
+ .num_samplerates = 20,
+ .samplerates = {
+ SR_MHZ(125), SR_MHZ(100),
+ SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
+ SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
+ SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
+ SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
+ SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
+ SR_HZ(500), SR_HZ(200), SR_HZ(100),
+ },
+
+ .apply_fpga_config = &apply_fpga_config,
+ .device_init_check = &device_init_check,
+ .setup_acquisition = &setup_acquisition,
+
+ .prepare_request = &prepare_request,
+ .handle_response = &handle_response,
+};
#include <config.h>
#include <string.h>
+#include "lwla.h"
#include "protocol.h"
-/* Bit mask for the RLE repeat-count-follows flag. */
-#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
-
-/* Start address of capture status memory area to read. */
-#define CAP_STAT_ADDR 5
-
-/* Number of 64-bit words read from the capture status memory. */
-#define CAP_STAT_LEN 5
-
-/* The bitstream filenames are indexed by the clock_config enumeration.
+/* Status polling interval during acquisition.
*/
-static const char bitstream_map[][32] = {
- "sysclk-lwla1034-off.rbf",
- "sysclk-lwla1034-int.rbf",
- "sysclk-lwla1034-extpos.rbf",
- "sysclk-lwla1034-extneg.rbf",
-};
+#define POLL_INTERVAL 100 /* ms */
/* Submit an already filled-in USB transfer.
*/
return SR_OK;
}
-/* Set up the LWLA in preparation for an acquisition session.
+/* Set up transfer for the next register in a write sequence.
*/
-static int capture_setup(const struct sr_dev_inst *sdi)
+static void next_reg_write(struct acquisition_state *acq)
{
- struct dev_context *devc;
- struct acquisition_state *acq;
- uint64_t divider_count;
- uint64_t trigger_mask;
- uint64_t memory_limit;
- uint16_t command[3 + (10 * 4)];
-
- devc = sdi->priv;
- acq = devc->acquisition;
-
- command[0] = LWLA_WORD(CMD_CAP_SETUP);
- command[1] = LWLA_WORD(0); /* address */
- command[2] = LWLA_WORD(10); /* length */
-
- command[3] = LWLA_WORD_0(devc->channel_mask);
- command[4] = LWLA_WORD_1(devc->channel_mask);
- command[5] = LWLA_WORD_2(devc->channel_mask);
- command[6] = LWLA_WORD_3(devc->channel_mask);
-
- /* Set the clock divide counter maximum for samplerates of up to
- * 100 MHz. At the highest samplerate of 125 MHz the clock divider
- * is bypassed.
- */
- if (!acq->bypass_clockdiv && devc->samplerate > 0)
- divider_count = SR_MHZ(100) / devc->samplerate - 1;
- else
- divider_count = 0;
-
- command[7] = LWLA_WORD_0(divider_count);
- command[8] = LWLA_WORD_1(divider_count);
- command[9] = LWLA_WORD_2(divider_count);
- command[10] = LWLA_WORD_3(divider_count);
-
- command[11] = LWLA_WORD_0(devc->trigger_values);
- command[12] = LWLA_WORD_1(devc->trigger_values);
- command[13] = LWLA_WORD_2(devc->trigger_values);
- command[14] = LWLA_WORD_3(devc->trigger_values);
-
- command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
- command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
- command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
- command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
-
- trigger_mask = devc->trigger_mask;
- /* Set bits to select external TRG input edge. */
- if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
- switch (devc->cfg_trigger_slope) {
- case EDGE_POSITIVE:
- trigger_mask |= (uint64_t)1 << 35;
- break;
- case EDGE_NEGATIVE:
- trigger_mask |= (uint64_t)1 << 34;
- break;
- }
-
- command[19] = LWLA_WORD_0(trigger_mask);
- command[20] = LWLA_WORD_1(trigger_mask);
- command[21] = LWLA_WORD_2(trigger_mask);
- command[22] = LWLA_WORD_3(trigger_mask);
-
- /* Set the capture memory full threshold. This is slightly less
- * than the actual maximum, most likely in order to compensate for
- * pipeline latency.
- */
- memory_limit = MEMORY_DEPTH - 16;
+ struct regval *regval;
- command[23] = LWLA_WORD_0(memory_limit);
- command[24] = LWLA_WORD_1(memory_limit);
- command[25] = LWLA_WORD_2(memory_limit);
- command[26] = LWLA_WORD_3(memory_limit);
+ regval = &acq->reg_sequence[acq->reg_seq_pos];
- /* Fill remaining words with zeroes. */
- memset(&command[27], 0, sizeof(command) - 27 * sizeof(command[0]));
+ acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
+ acq->xfer_buf_out[1] = LWLA_WORD(regval->reg);
+ acq->xfer_buf_out[2] = LWLA_WORD_0(regval->val);
+ acq->xfer_buf_out[3] = LWLA_WORD_1(regval->val);
- return lwla_send_command(sdi->conn, command, ARRAY_SIZE(command));
+ acq->xfer_out->length = 4 * sizeof(acq->xfer_buf_out[0]);
}
-/* Issue a register write command as an asynchronous USB transfer.
+/* Set up transfer for the next register in a read sequence.
*/
-static int issue_write_reg(const struct sr_dev_inst *sdi,
- unsigned int reg, unsigned int value)
+static void next_reg_read(struct acquisition_state *acq)
{
- struct dev_context *devc;
- struct acquisition_state *acq;
-
- devc = sdi->priv;
- acq = devc->acquisition;
+ unsigned int addr;
- acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
- acq->xfer_buf_out[1] = LWLA_WORD(reg);
- acq->xfer_buf_out[2] = LWLA_WORD_0(value);
- acq->xfer_buf_out[3] = LWLA_WORD_1(value);
+ addr = acq->reg_sequence[acq->reg_seq_pos].reg;
- acq->xfer_out->length = 4 * sizeof(uint16_t);
+ acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
+ acq->xfer_buf_out[1] = LWLA_WORD(addr);
- return submit_transfer(devc, acq->xfer_out);
+ acq->xfer_out->length = 2 * sizeof(acq->xfer_buf_out[0]);
}
-/* Issue a register write command as an asynchronous USB transfer for the
- * next register/value pair of the currently active register write sequence.
+/* Decode the response to a register read request.
*/
-static int issue_next_write_reg(const struct sr_dev_inst *sdi)
+static int read_reg_response(struct acquisition_state *acq)
{
- struct dev_context *devc;
- struct regval_pair *regval;
- int ret;
+ uint32_t value;
- devc = sdi->priv;
-
- if (devc->reg_write_pos >= devc->reg_write_len) {
- sr_err("Already written all registers in sequence.");
- return SR_ERR_BUG;
+ if (acq->xfer_in->actual_length != 4) {
+ sr_err("Received size %d doesn't match expected size 4.",
+ acq->xfer_in->actual_length);
+ return SR_ERR;
}
- regval = &devc->reg_write_seq[devc->reg_write_pos];
-
- ret = issue_write_reg(sdi, regval->reg, regval->val);
- if (ret != SR_OK)
- return ret;
+ value = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
+ acq->reg_sequence[acq->reg_seq_pos].val = value;
- ++devc->reg_write_pos;
return SR_OK;
}
-/* Issue a capture status request as an asynchronous USB transfer.
+/* Enter a new state and submit the corresponding request to the device.
*/
-static void request_capture_status(const struct sr_dev_inst *sdi)
+static int submit_request(const struct sr_dev_inst *sdi,
+ enum protocol_state state)
{
struct dev_context *devc;
struct acquisition_state *acq;
+ int ret;
devc = sdi->priv;
acq = devc->acquisition;
- acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
- acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
- acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
-
- acq->xfer_out->length = 3 * sizeof(uint16_t);
-
- if (submit_transfer(devc, acq->xfer_out) == SR_OK)
- devc->state = STATE_STATUS_REQUEST;
-}
+ devc->state = state;
-/* Issue a request for the capture buffer fill level as
- * an asynchronous USB transfer.
- */
-static void request_capture_length(const struct sr_dev_inst *sdi)
-{
- struct dev_context *devc;
- struct acquisition_state *acq;
+ acq->xfer_out->length = 0;
+ acq->reg_seq_pos = 0;
+ acq->reg_seq_len = 0;
- devc = sdi->priv;
- acq = devc->acquisition;
+ /* Perform the model-specific action for the new state. */
+ ret = (*devc->model->prepare_request)(sdi);
- acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
- acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
+ if (ret != SR_OK) {
+ devc->transfer_error = TRUE;
+ return ret;
+ }
- acq->xfer_out->length = 2 * sizeof(uint16_t);
+ if (acq->reg_seq_pos < acq->reg_seq_len) {
+ if ((state & STATE_EXPECT_RESPONSE) != 0)
+ next_reg_read(acq);
+ else
+ next_reg_write(acq);
+ }
- if (submit_transfer(devc, acq->xfer_out) == SR_OK)
- devc->state = STATE_LENGTH_REQUEST;
+ return submit_transfer(devc, acq->xfer_out);
}
-/* Initiate the capture memory read operation: Reset the acquisition state
- * and start a sequence of register writes in order to set up the device for
- * reading from the capture buffer.
+/* Evaluate and act on the response to a capture status request.
*/
-static void issue_read_start(const struct sr_dev_inst *sdi)
+static void handle_status_response(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
- struct regval_pair *regvals;
+ unsigned int old_status;
devc = sdi->priv;
acq = devc->acquisition;
+ old_status = acq->status;
- /* Reset RLE state. */
- acq->rle = RLE_STATE_DATA;
- acq->sample = 0;
- acq->run_len = 0;
-
- acq->samples_done = 0;
-
- /* For some reason, the start address is 4 rather than 0. */
- acq->mem_addr_done = 4;
- acq->mem_addr_next = 4;
- acq->mem_addr_stop = acq->mem_addr_fill;
-
- /* Sample position in the packet output buffer. */
- acq->out_index = 0;
-
- regvals = devc->reg_write_seq;
-
- regvals[0].reg = REG_DIV_BYPASS;
- regvals[0].val = 1;
-
- regvals[1].reg = REG_MEM_CTRL;
- regvals[1].val = MEM_CTRL_CLR_IDX;
-
- regvals[2].reg = REG_MEM_START;
- regvals[2].val = 4;
-
- devc->reg_write_pos = 0;
- devc->reg_write_len = 3;
+ if ((*devc->model->handle_response)(sdi) != SR_OK) {
+ devc->transfer_error = TRUE;
+ return;
+ }
+ devc->state = STATE_STATUS_WAIT;
- if (issue_next_write_reg(sdi) == SR_OK)
- devc->state = STATE_READ_PREPARE;
-}
+ sr_spew("Captured %zu words, %" PRIu64 " ms, status 0x%02X.",
+ acq->mem_addr_fill, acq->duration_now, acq->status);
-/* Issue a command as an asynchronous USB transfer which returns the device
- * to normal state after a read operation. Sets a new device context state
- * on success.
- */
-static void issue_read_end(const struct sr_dev_inst *sdi)
-{
- struct dev_context *devc;
-
- devc = sdi->priv;
+ if ((~old_status & acq->status & STATUS_TRIGGERED) != 0)
+ sr_info("Capture triggered.");
- if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
- devc->state = STATE_READ_END;
+ if (acq->duration_now >= acq->duration_max) {
+ sr_dbg("Time limit reached, stopping capture.");
+ submit_request(sdi, STATE_STOP_CAPTURE);
+ } else if ((acq->status & STATUS_TRIGGERED) == 0) {
+ sr_spew("Waiting for trigger.");
+ } else if ((acq->status & STATUS_MEM_AVAIL) == 0) {
+ sr_dbg("Capture memory filled.");
+ submit_request(sdi, STATE_LENGTH_REQUEST);
+ } else if ((acq->status & STATUS_CAPTURING) != 0) {
+ sr_spew("Sampling in progress.");
+ }
}
-/* Decode an incoming response to a buffer fill level request and act on it
- * as appropriate. Note that this function changes the device context state.
+/* Evaluate and act on the response to a capture length request.
*/
-static void process_capture_length(const struct sr_dev_inst *sdi)
+static void handle_length_response(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
devc = sdi->priv;
acq = devc->acquisition;
- if (acq->xfer_in->actual_length != 4) {
- sr_err("Received size %d doesn't match expected size 4.",
- acq->xfer_in->actual_length);
+ if ((*devc->model->handle_response)(sdi) != SR_OK) {
devc->transfer_error = TRUE;
return;
}
- acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
-
- sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
-
- if (acq->mem_addr_fill > 0 && !devc->cancel_requested)
- issue_read_start(sdi);
- else
- issue_read_end(sdi);
-}
-
-/* Initiate a sequence of register write commands with the effect of
- * cancelling a running capture operation. This sets a new device state
- * if issuing the first command succeeds.
- */
-static void issue_stop_capture(const struct sr_dev_inst *sdi)
-{
- struct dev_context *devc;
- struct regval_pair *regvals;
-
- devc = sdi->priv;
+ acq->rle = RLE_STATE_DATA;
+ acq->sample = 0;
+ acq->run_len = 0;
+ acq->samples_done = 0;
+ acq->mem_addr_done = acq->mem_addr_next;
+ acq->out_index = 0;
- if (devc->stopping_in_progress)
+ if (acq->mem_addr_next >= acq->mem_addr_stop) {
+ submit_request(sdi, STATE_READ_FINISH);
return;
-
- regvals = devc->reg_write_seq;
-
- regvals[0].reg = REG_LONG_ADDR;
- regvals[0].val = LREG_CAP_CTRL;
-
- regvals[1].reg = REG_LONG_LOW;
- regvals[1].val = 0;
-
- regvals[2].reg = REG_LONG_HIGH;
- regvals[2].val = 0;
-
- regvals[3].reg = REG_LONG_STROBE;
- regvals[3].val = 0;
-
- regvals[4].reg = REG_DIV_BYPASS;
- regvals[4].val = 0;
-
- devc->reg_write_pos = 0;
- devc->reg_write_len = 5;
-
- if (issue_next_write_reg(sdi) == SR_OK) {
- devc->stopping_in_progress = TRUE;
- devc->state = STATE_STOP_CAPTURE;
}
+ sr_dbg("%zu words in capture buffer.",
+ acq->mem_addr_stop - acq->mem_addr_next);
+
+ submit_request(sdi, STATE_READ_PREPARE);
}
-/* Decode an incoming capture status response and act on it as appropriate.
- * Note that this function changes the device state.
+/* Evaluate and act on the response to a capture length request.
*/
-static void process_capture_status(const struct sr_dev_inst *sdi)
+static void handle_read_response(const struct sr_dev_inst *sdi)
{
- uint64_t duration;
struct dev_context *devc;
struct acquisition_state *acq;
- unsigned int mem_fill;
- unsigned int flags;
+ struct sr_datafeed_packet packet;
+ struct sr_datafeed_logic logic;
+ size_t end_addr;
devc = sdi->priv;
acq = devc->acquisition;
- if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
- sr_err("Received size %d doesn't match expected size %d.",
- acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
- devc->transfer_error = TRUE;
- return;
- }
-
- mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
- duration = LWLA_TO_UINT32(acq->xfer_buf_in[4])
- | ((uint64_t)LWLA_TO_UINT32(acq->xfer_buf_in[5]) << 32);
- flags = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK;
+ /* Prepare session packet. */
+ packet.type = SR_DF_LOGIC;
+ packet.payload = &logic;
+ logic.unitsize = (devc->model->num_channels + 7) / 8;
+ logic.data = acq->out_packet;
- /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
- * However, the time base used for the duration is apparently not
- * adjusted for this "boost" mode. Whereas normally the duration
- * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
- * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
- * counter period is the same as at the 100 MHz setting.
+ end_addr = MIN(acq->mem_addr_next, acq->mem_addr_stop);
+ acq->in_index = 0;
+ /*
+ * Repeatedly call the model-specific read response handler until
+ * all data received in the transfer has been accounted for.
*/
- if (acq->bypass_clockdiv)
- acq->duration_now = duration * 4 / 5;
- else
- acq->duration_now = duration;
-
- sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
- mem_fill, acq->duration_now, flags);
+ while (!devc->cancel_requested
+ && (acq->run_len > 0 || acq->mem_addr_done < end_addr)
+ && acq->samples_done < acq->samples_max) {
- if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
- sr_info("Capture triggered.");
-
- acq->capture_flags = flags;
+ if ((*devc->model->handle_response)(sdi) != SR_OK) {
+ devc->transfer_error = TRUE;
+ return;
+ }
+ if (acq->out_index * logic.unitsize >= PACKET_SIZE) {
+ /* Send off full logic packet. */
+ logic.length = acq->out_index * logic.unitsize;
+ sr_session_send(sdi, &packet);
+ acq->out_index = 0;
+ }
+ }
- if (acq->duration_now >= acq->duration_max) {
- sr_dbg("Time limit reached, stopping capture.");
- issue_stop_capture(sdi);
+ if (!devc->cancel_requested
+ && acq->samples_done < acq->samples_max
+ && acq->mem_addr_next < acq->mem_addr_stop) {
+ /* Request the next block. */
+ submit_request(sdi, STATE_READ_REQUEST);
return;
}
- devc->state = STATE_STATUS_WAIT;
- if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
- sr_spew("Waiting for trigger.");
- } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
- sr_dbg("Capture memory filled.");
- request_capture_length(sdi);
- } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
- sr_spew("Sampling in progress.");
+ /* Send partially filled packet as it is the last one. */
+ if (!devc->cancel_requested && acq->out_index > 0) {
+ logic.length = acq->out_index * logic.unitsize;
+ sr_session_send(sdi, &packet);
+ acq->out_index = 0;
}
+ submit_request(sdi, STATE_READ_FINISH);
}
-/* Issue a capture buffer read request as an asynchronous USB transfer.
- * The address and size of the memory area to read are derived from the
- * current acquisition state.
+/* Destroy and unset the acquisition state record.
*/
-static void request_read_mem(const struct sr_dev_inst *sdi)
+static void clear_acquisition_state(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
- size_t count;
devc = sdi->priv;
acq = devc->acquisition;
- if (acq->mem_addr_next >= acq->mem_addr_stop)
- return;
-
- /* Always read a multiple of 8 device words. */
- count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
- count = MIN(count, READ_CHUNK_LEN);
-
- acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
- acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
- acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
- acq->xfer_buf_out[3] = LWLA_WORD_0(count);
- acq->xfer_buf_out[4] = LWLA_WORD_1(count);
-
- acq->xfer_out->length = 5 * sizeof(uint16_t);
+ devc->acquisition = NULL;
- if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
- acq->mem_addr_next += count;
- devc->state = STATE_READ_REQUEST;
+ if (acq) {
+ libusb_free_transfer(acq->xfer_out);
+ libusb_free_transfer(acq->xfer_in);
+ g_free(acq);
}
}
-/* Demangle and decompress incoming sample data from the capture buffer.
- * The data chunk is taken from the acquisition state, and is expected to
- * contain a multiple of 8 device words.
- * All data currently in the acquisition buffer will be processed. Packets
- * of decoded samples are sent off to the session bus whenever the output
- * buffer becomes full while decoding.
+/* USB I/O source callback.
*/
-static int process_sample_data(const struct sr_dev_inst *sdi)
+static int transfer_event(int fd, int revents, void *cb_data)
{
- uint64_t sample;
- uint64_t high_nibbles;
- uint64_t word;
+ const struct sr_dev_inst *sdi;
struct dev_context *devc;
- struct acquisition_state *acq;
- uint8_t *out_p;
- uint32_t *slice;
+ struct drv_context *drvc;
+ struct timeval tv;
struct sr_datafeed_packet packet;
- struct sr_datafeed_logic logic;
- size_t expect_len;
- size_t actual_len;
- size_t out_max_samples;
- size_t out_run_samples;
- size_t ri;
- size_t in_words_left;
- size_t si;
+ int ret;
- devc = sdi->priv;
- acq = devc->acquisition;
+ (void)fd;
- if (acq->mem_addr_done >= acq->mem_addr_stop
- || acq->samples_done >= acq->samples_max)
- return SR_OK;
+ sdi = cb_data;
+ devc = sdi->priv;
+ drvc = sdi->driver->context;
- in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
- READ_CHUNK_LEN);
- expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t);
- actual_len = acq->xfer_in->actual_length;
+ if (!devc || !drvc)
+ return G_SOURCE_REMOVE;
- if (actual_len != expect_len) {
- sr_err("Received size %zu does not match expected size %zu.",
- actual_len, expect_len);
+ /* Handle pending USB events without blocking. */
+ tv.tv_sec = 0;
+ tv.tv_usec = 0;
+ ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
+ &tv, NULL);
+ if (ret != 0) {
+ sr_err("Event handling failed: %s.", libusb_error_name(ret));
devc->transfer_error = TRUE;
- return SR_ERR;
}
- acq->mem_addr_done += in_words_left;
- /* Prepare session packet. */
- packet.type = SR_DF_LOGIC;
- packet.payload = &logic;
- logic.unitsize = UNIT_SIZE;
- logic.data = acq->out_packet;
-
- slice = acq->xfer_buf_in;
- si = 0; /* word index within slice */
-
- for (;;) {
- /* Calculate number of samples to write into packet. */
- out_max_samples = MIN(acq->samples_max - acq->samples_done,
- PACKET_LENGTH - acq->out_index);
- out_run_samples = MIN(acq->run_len, out_max_samples);
-
- /* Expand run-length samples into session packet. */
- sample = acq->sample;
- out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
-
- for (ri = 0; ri < out_run_samples; ++ri) {
- out_p[0] = sample & 0xFF;
- out_p[1] = (sample >> 8) & 0xFF;
- out_p[2] = (sample >> 16) & 0xFF;
- out_p[3] = (sample >> 24) & 0xFF;
- out_p[4] = (sample >> 32) & 0xFF;
- out_p += UNIT_SIZE;
- }
- acq->run_len -= out_run_samples;
- acq->out_index += out_run_samples;
- acq->samples_done += out_run_samples;
-
- /* Packet full or sample count limit reached? */
- if (out_run_samples == out_max_samples) {
- logic.length = acq->out_index * UNIT_SIZE;
- sr_session_send(sdi, &packet);
- acq->out_index = 0;
-
- if (acq->samples_done >= acq->samples_max)
- return SR_OK; /* sample limit reached */
- if (acq->run_len > 0)
- continue; /* need another packet */
- }
-
- if (in_words_left == 0)
- break; /* done with current chunk */
-
- /* Now work on the current slice. */
- high_nibbles = LWLA_TO_UINT32(slice[8]);
- word = LWLA_TO_UINT32(slice[si]);
- word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
-
- if (acq->rle == RLE_STATE_DATA) {
- acq->sample = word & ALL_CHANNELS_MASK;
- acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
- if (word & RLE_FLAG_LEN_FOLLOWS)
- acq->rle = RLE_STATE_LEN;
- } else {
- acq->run_len += word << 1;
- acq->rle = RLE_STATE_DATA;
- }
-
- /* Move to next word. */
- si = (si + 1) % 8;
- if (si == 0)
- slice += 9;
- --in_words_left;
- }
-
- /* Send out partially filled packet if this was the last chunk. */
- if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
- logic.length = acq->out_index * UNIT_SIZE;
- sr_session_send(sdi, &packet);
- acq->out_index = 0;
+ if (!devc->transfer_error && devc->state == STATE_STATUS_WAIT) {
+ if (devc->cancel_requested)
+ submit_request(sdi, STATE_STOP_CAPTURE);
+ else if (revents == 0) /* status poll timeout */
+ submit_request(sdi, STATE_STATUS_REQUEST);
}
- return SR_OK;
-}
-
-/* Finish an acquisition session. This sends the end packet to the session
- * bus and removes the listener for asynchronous USB transfers.
- */
-static void end_acquisition(struct sr_dev_inst *sdi)
-{
- struct drv_context *drvc;
- struct dev_context *devc;
- struct sr_datafeed_packet packet;
- drvc = sdi->driver->context;
- devc = sdi->priv;
+ /* Stop processing events if an error occurred on a transfer. */
+ if (devc->transfer_error)
+ devc->state = STATE_IDLE;
- if (devc->state == STATE_IDLE)
- return;
+ if (devc->state != STATE_IDLE)
+ return G_SOURCE_CONTINUE;
- devc->state = STATE_IDLE;
+ sr_info("Acquisition stopped.");
- /* Remove USB file descriptors from polling. */
- usb_source_remove(sdi->session, drvc->sr_ctx);
+ /* We are done, clean up and send end packet to session bus. */
+ clear_acquisition_state(sdi);
packet.type = SR_DF_END;
+ packet.payload = NULL;
sr_session_send(sdi, &packet);
- lwla_free_acquisition_state(devc->acquisition);
- devc->acquisition = NULL;
- devc->cancel_requested = FALSE;
+ return G_SOURCE_REMOVE;
}
/* USB output transfer completion callback.
*/
-static void LIBUSB_CALL receive_transfer_out(struct libusb_transfer *transfer)
+static void LIBUSB_CALL transfer_out_completed(struct libusb_transfer *transfer)
{
- struct sr_dev_inst *sdi;
+ const struct sr_dev_inst *sdi;
struct dev_context *devc;
+ struct acquisition_state *acq;
sdi = transfer->user_data;
devc = sdi->priv;
+ acq = devc->acquisition;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
sr_err("Transfer to device failed: %d.", transfer->status);
return;
}
- if (devc->reg_write_pos < devc->reg_write_len) {
- issue_next_write_reg(sdi);
- } else {
- switch (devc->state) {
- case STATE_START_CAPTURE:
+ /* If this was a read request, wait for the response. */
+ if ((devc->state & STATE_EXPECT_RESPONSE) != 0) {
+ submit_transfer(devc, acq->xfer_in);
+ return;
+ }
+ if (acq->reg_seq_pos < acq->reg_seq_len)
+ acq->reg_seq_pos++; /* register write completed */
+
+ /* Repeat until all queued registers have been written. */
+ if (acq->reg_seq_pos < acq->reg_seq_len && !devc->cancel_requested) {
+ next_reg_write(acq);
+ submit_transfer(devc, acq->xfer_out);
+ return;
+ }
+
+ switch (devc->state) {
+ case STATE_START_CAPTURE:
+ sr_info("Acquisition started.");
+
+ if (!devc->cancel_requested)
devc->state = STATE_STATUS_WAIT;
- break;
- case STATE_STATUS_REQUEST:
- devc->state = STATE_STATUS_RESPONSE;
- submit_transfer(devc, devc->acquisition->xfer_in);
- break;
- case STATE_STOP_CAPTURE:
- if (!devc->cancel_requested)
- request_capture_length(sdi);
- else
- end_acquisition(sdi);
- break;
- case STATE_LENGTH_REQUEST:
- devc->state = STATE_LENGTH_RESPONSE;
- submit_transfer(devc, devc->acquisition->xfer_in);
- break;
- case STATE_READ_PREPARE:
- request_read_mem(sdi);
- break;
- case STATE_READ_REQUEST:
- devc->state = STATE_READ_RESPONSE;
- submit_transfer(devc, devc->acquisition->xfer_in);
- break;
- case STATE_READ_END:
- end_acquisition(sdi);
- break;
- default:
- sr_err("Unexpected device state %d.", devc->state);
- break;
- }
+ else
+ submit_request(sdi, STATE_STOP_CAPTURE);
+ break;
+ case STATE_STOP_CAPTURE:
+ if (!devc->cancel_requested)
+ submit_request(sdi, STATE_LENGTH_REQUEST);
+ else
+ devc->state = STATE_IDLE;
+ break;
+ case STATE_READ_PREPARE:
+ if (acq->mem_addr_next < acq->mem_addr_stop && !devc->cancel_requested)
+ submit_request(sdi, STATE_READ_REQUEST);
+ else
+ submit_request(sdi, STATE_READ_FINISH);
+ break;
+ case STATE_READ_FINISH:
+ devc->state = STATE_IDLE;
+ break;
+ default:
+ sr_err("Unexpected device state %d.", devc->state);
+ devc->transfer_error = TRUE;
+ break;
}
}
/* USB input transfer completion callback.
*/
-static void LIBUSB_CALL receive_transfer_in(struct libusb_transfer *transfer)
+static void LIBUSB_CALL transfer_in_completed(struct libusb_transfer *transfer)
{
- struct sr_dev_inst *sdi;
+ const struct sr_dev_inst *sdi;
struct dev_context *devc;
struct acquisition_state *acq;
acq = devc->acquisition;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
- sr_err("Transfer from device failed: %d.", transfer->status);
+ sr_err("Transfer from device failed (state %d): %s.",
+ devc->state, libusb_error_name(transfer->status));
+ devc->transfer_error = TRUE;
+ return;
+ }
+ if ((devc->state & STATE_EXPECT_RESPONSE) == 0) {
+ sr_err("Unexpected completion of input transfer (state %d).",
+ devc->state);
devc->transfer_error = TRUE;
return;
}
+ if (acq->reg_seq_pos < acq->reg_seq_len && !devc->cancel_requested) {
+ /* Complete register read sequence. */
+ if (read_reg_response(acq) != SR_OK) {
+ devc->transfer_error = TRUE;
+ return;
+ }
+ /* Repeat until all queued registers have been read. */
+ if (++acq->reg_seq_pos < acq->reg_seq_len) {
+ next_reg_read(acq);
+ submit_transfer(devc, acq->xfer_out);
+ return;
+ }
+ }
+
switch (devc->state) {
- case STATE_STATUS_RESPONSE:
- process_capture_status(sdi);
- break;
- case STATE_LENGTH_RESPONSE:
- process_capture_length(sdi);
+ case STATE_STATUS_REQUEST:
+ if (devc->cancel_requested)
+ submit_request(sdi, STATE_STOP_CAPTURE);
+ else
+ handle_status_response(sdi);
break;
- case STATE_READ_RESPONSE:
- if (process_sample_data(sdi) == SR_OK
- && acq->mem_addr_next < acq->mem_addr_stop
- && acq->samples_done < acq->samples_max)
- request_read_mem(sdi);
+ case STATE_LENGTH_REQUEST:
+ if (devc->cancel_requested)
+ submit_request(sdi, STATE_READ_FINISH);
else
- issue_read_end(sdi);
+ handle_length_response(sdi);
+ break;
+ case STATE_READ_REQUEST:
+ handle_read_response(sdi);
break;
default:
sr_err("Unexpected device state %d.", devc->state);
+ devc->transfer_error = TRUE;
break;
}
}
-/* Initialize the LWLA. This downloads a bitstream into the FPGA
- * and executes a simple device test sequence.
+/* Set up the acquisition state record.
*/
-SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
+static int init_acquisition_state(const struct sr_dev_inst *sdi)
{
- uint64_t value;
struct dev_context *devc;
- int ret;
+ struct sr_usb_dev_inst *usb;
+ struct acquisition_state *acq;
devc = sdi->priv;
+ usb = sdi->conn;
- /* Force reload of bitstream */
- devc->cur_clock_config = CONF_CLOCK_NONE;
-
- ret = lwla_set_clock_config(sdi);
- if (ret != SR_OK)
- return ret;
-
- ret = lwla_read_long_reg(sdi->conn, LREG_TEST_ID, &value);
- if (ret != SR_OK)
- return ret;
-
- /* Ignore the value returned by the first read */
- ret = lwla_read_long_reg(sdi->conn, LREG_TEST_ID, &value);
- if (ret != SR_OK)
- return ret;
-
- if (value != UINT64_C(0x1234567887654321)) {
- sr_err("Received invalid test word 0x%016" PRIX64 ".", value);
+ if (devc->acquisition) {
+ sr_err("Acquisition still in progress?");
+ return SR_ERR;
+ }
+ if (devc->cfg_clock_source == CLOCK_INTERNAL && devc->samplerate == 0) {
+ sr_err("Samplerate not set.");
return SR_ERR;
}
- return SR_OK;
-}
-
-/* Select the LWLA clock configuration. If the clock source changed from
- * the previous setting, this will download a new bitstream to the FPGA.
- */
-SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi)
-{
- struct dev_context *devc;
- struct drv_context *drvc;
- int ret;
- enum clock_config choice;
- devc = sdi->priv;
- drvc = sdi->driver->context;
+ acq = g_try_malloc0(sizeof(struct acquisition_state));
+ if (!acq)
+ return SR_ERR_MALLOC;
- if (sdi->status == SR_ST_INACTIVE)
- choice = CONF_CLOCK_NONE;
- else if (devc->cfg_clock_source == CLOCK_INTERNAL)
- choice = CONF_CLOCK_INT;
- else if (devc->cfg_clock_edge == EDGE_POSITIVE)
- choice = CONF_CLOCK_EXT_RISE;
- else
- choice = CONF_CLOCK_EXT_FALL;
-
- if (choice != devc->cur_clock_config) {
- devc->cur_clock_config = CONF_CLOCK_NONE;
- ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
- bitstream_map[choice]);
- if (ret == SR_OK)
- devc->cur_clock_config = choice;
- return ret;
+ acq->xfer_in = libusb_alloc_transfer(0);
+ if (!acq->xfer_in) {
+ g_free(acq);
+ return SR_ERR_MALLOC;
+ }
+ acq->xfer_out = libusb_alloc_transfer(0);
+ if (!acq->xfer_out) {
+ libusb_free_transfer(acq->xfer_in);
+ g_free(acq);
+ return SR_ERR_MALLOC;
}
- return SR_OK;
-}
-/* Configure the LWLA in preparation for an acquisition session.
- */
-SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
-{
- struct dev_context *devc;
- struct sr_usb_dev_inst *usb;
- struct acquisition_state *acq;
- struct regval_pair regvals[7];
- int ret;
+ libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
+ (unsigned char *)acq->xfer_buf_out, 0,
+ &transfer_out_completed,
+ (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
- devc = sdi->priv;
- usb = sdi->conn;
- acq = devc->acquisition;
+ libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
+ (unsigned char *)acq->xfer_buf_in,
+ sizeof(acq->xfer_buf_in),
+ &transfer_in_completed,
+ (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
if (devc->limit_msec > 0) {
acq->duration_max = devc->limit_msec;
if (devc->cfg_clock_source == CLOCK_INTERNAL) {
sr_info("Internal clock, samplerate %" PRIu64 ".",
devc->samplerate);
- if (devc->samplerate == 0)
- return SR_ERR_BUG;
- /* At 125 MHz, the clock divider is bypassed. */
- acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
+ /* Ramp up clock speed to enable samplerates above 100 MS/s. */
+ acq->clock_boost = (devc->samplerate > SR_MHZ(100));
/* If only one of the limits is set, derive the other one. */
if (devc->limit_msec == 0 && devc->limit_samples > 0)
acq->samples_max = devc->limit_msec
* devc->samplerate / 1000;
} else {
- acq->bypass_clockdiv = TRUE;
+ acq->clock_boost = TRUE;
- if (devc->cfg_clock_edge == EDGE_NEGATIVE)
- sr_info("External clock, falling edge.");
- else
+ if (devc->cfg_clock_edge == EDGE_POSITIVE)
sr_info("External clock, rising edge.");
+ else
+ sr_info("External clock, falling edge.");
}
- regvals[0].reg = REG_MEM_CTRL;
- regvals[0].val = MEM_CTRL_CLR_IDX;
-
- regvals[1].reg = REG_MEM_CTRL;
- regvals[1].val = MEM_CTRL_WRITE;
-
- regvals[2].reg = REG_LONG_ADDR;
- regvals[2].val = LREG_CAP_CTRL;
-
- regvals[3].reg = REG_LONG_LOW;
- regvals[3].val = CAP_CTRL_CLR_TIMEBASE | CAP_CTRL_FLUSH_FIFO
- | CAP_CTRL_CLR_FIFOFULL | CAP_CTRL_CLR_COUNTER;
- regvals[4].reg = REG_LONG_HIGH;
- regvals[4].val = 0;
+ acq->rle_enabled = devc->cfg_rle;
+ devc->acquisition = acq;
- regvals[5].reg = REG_LONG_STROBE;
- regvals[5].val = 0;
-
- regvals[6].reg = REG_DIV_BYPASS;
- regvals[6].val = acq->bypass_clockdiv;
-
- ret = lwla_write_regs(usb, regvals, ARRAY_SIZE(regvals));
- if (ret != SR_OK)
- return ret;
-
- return capture_setup(sdi);
+ return SR_OK;
}
-/* Start the capture operation on the LWLA device. Beginning with this
- * function, all USB transfers will be asynchronous until the end of the
- * acquisition session.
- */
SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
{
+ struct drv_context *drvc;
struct dev_context *devc;
- struct sr_usb_dev_inst *usb;
- struct acquisition_state *acq;
- struct regval_pair *regvals;
+ int ret;
+ drvc = sdi->driver->context;
devc = sdi->priv;
- usb = sdi->conn;
- acq = devc->acquisition;
-
- acq->duration_now = 0;
- acq->mem_addr_fill = 0;
- acq->capture_flags = 0;
- libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
- (unsigned char *)acq->xfer_buf_out, 0,
- &receive_transfer_out,
- (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
-
- libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
- (unsigned char *)acq->xfer_buf_in,
- sizeof acq->xfer_buf_in,
- &receive_transfer_in,
- (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
-
- regvals = devc->reg_write_seq;
-
- regvals[0].reg = REG_LONG_ADDR;
- regvals[0].val = LREG_CAP_CTRL;
-
- regvals[1].reg = REG_LONG_LOW;
- regvals[1].val = CAP_CTRL_TRG_EN;
-
- regvals[2].reg = REG_LONG_HIGH;
- regvals[2].val = 0;
-
- regvals[3].reg = REG_LONG_STROBE;
- regvals[3].val = 0;
-
- devc->reg_write_pos = 0;
- devc->reg_write_len = 4;
-
- devc->state = STATE_START_CAPTURE;
-
- return issue_next_write_reg(sdi);
-}
-
-/* Allocate an acquisition state object.
- */
-SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
-{
- struct acquisition_state *acq;
+ if (devc->state != STATE_IDLE) {
+ sr_err("Not in idle state, cannot start acquisition.");
+ return SR_ERR;
+ }
+ devc->cancel_requested = FALSE;
+ devc->transfer_error = FALSE;
- acq = g_malloc0(sizeof(struct acquisition_state));
+ ret = init_acquisition_state(sdi);
+ if (ret != SR_OK)
+ return ret;
- acq->xfer_in = libusb_alloc_transfer(0);
- if (!acq->xfer_in) {
- sr_err("Transfer malloc failed.");
- g_free(acq);
- return NULL;
+ ret = (*devc->model->setup_acquisition)(sdi);
+ if (ret != SR_OK) {
+ sr_err("Failed to set up device for acquisition.");
+ clear_acquisition_state(sdi);
+ return ret;
}
-
- acq->xfer_out = libusb_alloc_transfer(0);
- if (!acq->xfer_out) {
- sr_err("Transfer malloc failed.");
- libusb_free_transfer(acq->xfer_in);
- g_free(acq);
- return NULL;
+ /* Register event source for asynchronous USB I/O. */
+ ret = usb_source_add(sdi->session, drvc->sr_ctx, POLL_INTERVAL,
+ &transfer_event, (struct sr_dev_inst *)sdi);
+ if (ret != SR_OK) {
+ clear_acquisition_state(sdi);
+ return ret;
}
+ ret = submit_request(sdi, STATE_START_CAPTURE);
- return acq;
-}
-
-/* Deallocate an acquisition state object.
- */
-SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
-{
- if (acq) {
- libusb_free_transfer(acq->xfer_out);
- libusb_free_transfer(acq->xfer_in);
- g_free(acq);
+ if (ret == SR_OK) {
+ /* Send header packet to the session bus. */
+ ret = std_session_send_df_header(sdi, LOG_PREFIX);
}
-}
-
-/* USB I/O source callback.
- */
-SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
-{
- struct sr_dev_inst *sdi;
- struct dev_context *devc;
- struct drv_context *drvc;
- struct timeval tv;
- int ret;
-
- (void)fd;
-
- sdi = cb_data;
- devc = sdi->priv;
- drvc = sdi->driver->context;
-
- if (!devc || !drvc)
- return FALSE;
-
- /* No timeout: return immediately. */
- tv.tv_sec = 0;
- tv.tv_usec = 0;
-
- ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
- &tv, NULL);
- if (ret != 0)
- sr_err("Event handling failed: %s.", libusb_error_name(ret));
-
- /* If no event flags are set the timeout must have expired. */
- if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
- if (devc->cancel_requested)
- issue_stop_capture(sdi);
- else
- request_capture_status(sdi);
+ if (ret != SR_OK) {
+ usb_source_remove(sdi->session, drvc->sr_ctx);
+ clear_acquisition_state(sdi);
}
-
- /* Check if an error occurred on a transfer. */
- if (devc->transfer_error)
- end_acquisition(sdi);
-
- return TRUE;
+ return ret;
}
#include <stdint.h>
#include <glib.h>
#include <libsigrok/libsigrok.h>
-#include "libsigrok-internal.h"
-#include "lwla.h"
+#include <libsigrok-internal.h>
-/* For now, only the LWLA1034 is supported.
- */
#define VENDOR_NAME "SysClk"
-#define MODEL_NAME "LWLA1034"
-
-#define USB_VID_PID "2961.6689"
-#define USB_CONFIG 1
-#define USB_INTERFACE 0
-#define USB_TIMEOUT_MS 3000
-
-#define NUM_CHANNELS 34
-
-/* Bit mask covering all 34 channels.
- */
-#define ALL_CHANNELS_MASK (((uint64_t)1 << NUM_CHANNELS) - 1)
-
-/** Unit and packet size for the sigrok logic datafeed.
- */
-#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
-#define PACKET_LENGTH (10 * 1000) /* units */
-/** Size of the acquisition buffer in device memory units.
+/* Maximum configurable sample count limit.
+ * Due to compression, there is no meaningful hardware limit the driver
+ * could report. So this value is less than 2^64-1 for no reason other
+ * than to safeguard against integer overflows.
*/
-#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
+#define MAX_LIMIT_SAMPLES (UINT64_C(1000) * 1000 * 1000 * 1000)
-/** Number of device memory units (36 bit) to read at a time. Slices of 8
- * consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
- * length should be a multiple of 8 to ensure alignment to slice boundaries.
- *
- * Experimentation has shown that reading chunks larger than about 1024 bytes
- * is unreliable. The threshold seems to relate to the buffer size on the FX2
- * USB chip: The configured endpoint buffer size is 512, and with double or
- * triple buffering enabled a multiple of 512 bytes can be kept in fly.
- *
- * The vendor software limits reads to 120 words (15 slices, 540 bytes) at
- * a time. So far, it appears safe to increase this to 224 words (28 slices,
- * 1008 bytes), thus making the most of two 512 byte buffers.
- */
-#define READ_CHUNK_LEN (28 * 8)
-
-/** Calculate the required buffer size in 32-bit units for reading a given
- * number of device memory words. Rounded to a multiple of 8 device words.
+/* Maximum configurable acquisition time limit.
+ * Due to compression, there is no hardware limit that would be meaningful
+ * in practice. However, the LWLA1016 reports the elapsed time as a 32-bit
+ * value, so keep this below 2^32.
*/
-#define LWLA1034_MEMBUF_LEN(count) (((count) + 7) / 8 * 9)
+#define MAX_LIMIT_MSEC (1000 * 1000 * 1000)
-/** Maximum number of 16-bit words sent at a time during acquisition.
- * Used for allocating the libusb transfer buffer.
- */
-#define MAX_ACQ_SEND_WORDS 8 /* 5 for memory read request plus stuffing */
-
-/** Maximum number of 32-bit words received at a time during acquisition.
- * Round to the next multiple of the endpoint buffer size to avoid nasty
- * transfer overflow conditions on hiccups.
- */
-#define MAX_ACQ_RECV_LEN ((READ_CHUNK_LEN / 8 * 9 + 127) / 128 * 128)
+struct acquisition_state;
-/** Maximum length of a register write sequence.
+/* USB vendor and product IDs.
*/
-#define MAX_REG_WRITE_SEQ_LEN 5
-
-/** Default configured samplerate.
- */
-#define DEFAULT_SAMPLERATE SR_MHZ(125)
-
-/** Maximum configurable sample count limit.
- */
-#define MAX_LIMIT_SAMPLES (UINT64_C(1) << 48)
-
-/** Maximum configurable capture duration in milliseconds.
- */
-#define MAX_LIMIT_MSEC (UINT64_C(1) << 32)
+enum {
+ USB_VID_SYSCLK = 0x2961,
+ USB_PID_LWLA1016 = 0x6688,
+ USB_PID_LWLA1034 = 0x6689,
+};
-/** LWLA1034 FPGA clock configurations.
+/* USB device characteristics.
*/
-enum clock_config {
- CONF_CLOCK_NONE,
- CONF_CLOCK_INT,
- CONF_CLOCK_EXT_RISE,
- CONF_CLOCK_EXT_FALL,
+enum {
+ USB_CONFIG = 1,
+ USB_INTERFACE = 0,
+ USB_TIMEOUT_MS = 3000,
};
-/** Available clock sources.
+/** LWLA1034 clock sources.
*/
enum clock_source {
- CLOCK_INTERNAL,
+ CLOCK_INTERNAL = 0,
CLOCK_EXT_CLK,
};
-/** Available trigger sources.
+/** LWLA1034 trigger sources.
*/
enum trigger_source {
TRIGGER_CHANNELS = 0,
TRIGGER_EXT_TRG,
};
-/** Available edge choices for the external clock and trigger inputs.
+/** Edge choices for the LWLA1034 external clock and trigger inputs.
*/
enum signal_edge {
EDGE_POSITIVE = 0,
EDGE_NEGATIVE,
};
-/** LWLA device states.
+/* Common indicator for no or unknown FPGA config. */
+enum {
+ FPGA_NOCONF = -1,
+};
+
+/** Acquisition protocol states.
*/
-enum device_state {
+enum protocol_state {
+ /* idle states */
STATE_IDLE = 0,
-
- STATE_START_CAPTURE,
-
STATE_STATUS_WAIT,
- STATE_STATUS_REQUEST,
- STATE_STATUS_RESPONSE,
-
+ /* device command states */
+ STATE_START_CAPTURE,
STATE_STOP_CAPTURE,
-
- STATE_LENGTH_REQUEST,
- STATE_LENGTH_RESPONSE,
-
STATE_READ_PREPARE,
+ STATE_READ_FINISH,
+ /* command followed by response */
+ STATE_EXPECT_RESPONSE = 1 << 3,
+ STATE_STATUS_REQUEST = STATE_EXPECT_RESPONSE,
+ STATE_LENGTH_REQUEST,
STATE_READ_REQUEST,
- STATE_READ_RESPONSE,
- STATE_READ_END,
-};
-
-/** LWLA run-length encoding states.
- */
-enum rle_state {
- RLE_STATE_DATA,
- RLE_STATE_LEN
-};
-
-/** LWLA sample acquisition and decompression state.
- */
-struct acquisition_state {
- uint64_t sample;
- uint64_t run_len;
-
- /** Maximum number of samples to process. */
- uint64_t samples_max;
- /** Number of samples sent to the session bus. */
- uint64_t samples_done;
-
- /** Maximum duration of capture, in milliseconds. */
- uint64_t duration_max;
- /** Running capture duration since trigger event. */
- uint64_t duration_now;
-
- /** Capture memory fill level. */
- size_t mem_addr_fill;
-
- size_t mem_addr_done;
- size_t mem_addr_next;
- size_t mem_addr_stop;
-
- size_t out_index;
-
- struct libusb_transfer *xfer_in;
- struct libusb_transfer *xfer_out;
-
- unsigned int capture_flags;
-
- enum rle_state rle;
-
- /** Whether to bypass the clock divider. */
- gboolean bypass_clockdiv;
-
- /* Payload data buffers for incoming and outgoing transfers. */
- uint32_t xfer_buf_in[MAX_ACQ_RECV_LEN];
- uint16_t xfer_buf_out[MAX_ACQ_SEND_WORDS];
-
- /* Payload buffer for sigrok logic packets. */
- uint8_t out_packet[PACKET_LENGTH * UNIT_SIZE];
};
/** Private, per-device-instance driver context.
*/
struct dev_context {
- /** The samplerate selected by the user. */
- uint64_t samplerate;
-
- /** The maximum sampling duration, in milliseconds. */
- uint64_t limit_msec;
+ uint64_t samplerate; /* requested samplerate */
- /** The maximum number of samples to acquire. */
- uint64_t limit_samples;
+ uint64_t limit_msec; /* requested capture duration in ms */
+ uint64_t limit_samples; /* requested capture length in samples */
- /** Channels to use. */
- uint64_t channel_mask;
+ uint64_t channel_mask; /* bit mask of enabled channels */
- uint64_t trigger_mask;
- uint64_t trigger_edge_mask;
- uint64_t trigger_values;
+ uint64_t trigger_mask; /* trigger enable mask */
+ uint64_t trigger_edge_mask; /* trigger type mask */
+ uint64_t trigger_values; /* trigger level/slope bits */
- struct acquisition_state *acquisition;
+ const struct model_info *model; /* device model descriptor */
+ struct acquisition_state *acquisition; /* running capture state */
+ int active_fpga_config; /* FPGA configuration index */
- struct regval_pair reg_write_seq[MAX_REG_WRITE_SEQ_LEN];
- int reg_write_pos;
- int reg_write_len;
+ enum protocol_state state; /* async protocol state */
+ gboolean cancel_requested; /* stop after current transfer */
+ gboolean transfer_error; /* error during device communication */
- enum device_state state;
+ gboolean cfg_rle; /* RLE compression setting */
+ enum clock_source cfg_clock_source; /* clock source setting */
+ enum signal_edge cfg_clock_edge; /* ext clock edge setting */
+ enum trigger_source cfg_trigger_source; /* trigger source setting */
+ enum signal_edge cfg_trigger_slope; /* ext trigger slope setting */
- /** The currently active clock configuration of the device. */
- enum clock_config cur_clock_config;
+};
- /** Clock source configuration setting. */
- enum clock_source cfg_clock_source;
- /** Clock edge configuration setting. */
- enum signal_edge cfg_clock_edge;
+/** LWLA model descriptor.
+ */
+struct model_info {
+ char name[12];
+ int num_channels;
- /** Trigger source configuration setting. */
- enum trigger_source cfg_trigger_source;
- /** Trigger slope configuration setting. */
- enum signal_edge cfg_trigger_slope;
+ unsigned int num_devopts;
+ uint32_t devopts[8];
- /** Whether a running acquisition should be canceled. */
- gboolean cancel_requested;
+ unsigned int num_samplerates;
+ uint64_t samplerates[20];
- /* Indicates that stopping the acquisition is currently in progress. */
- gboolean stopping_in_progress;
+ int (*apply_fpga_config)(const struct sr_dev_inst *sdi);
+ int (*device_init_check)(const struct sr_dev_inst *sdi);
+ int (*setup_acquisition)(const struct sr_dev_inst *sdi);
- /* Indicates whether a transfer failed. */
- gboolean transfer_error;
+ int (*prepare_request)(const struct sr_dev_inst *sdi);
+ int (*handle_response)(const struct sr_dev_inst *sdi);
};
-SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void);
-SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq);
+SR_PRIV const struct model_info lwla1016_info;
+SR_PRIV const struct model_info lwla1034_info;
-SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi);
-SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi);
-SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi);
SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi);
-SR_PRIV int lwla_abort_acquisition(const struct sr_dev_inst *sdi);
-
-SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data);
#endif