annotations = (
('time', 'Time'),
('average', 'Average'),
+ ('delta', 'Delta'),
)
annotation_rows = (
('time', 'Time', (0,)),
('average', 'Average', (1,)),
+ ('delta', 'Delta', (2,)),
)
options = (
{ 'id': 'avg_period', 'desc': 'Averaging period', 'default': 100 },
+ { 'id': 'edge', 'desc': 'Edges to check', 'default': 'any', 'values': ('any', 'rising', 'falling') },
+ { 'id': 'delta', 'desc': 'Show delta from last', 'default': 'no', 'values': ('yes', 'no') },
)
def __init__(self):
self.last_samplenum = None
self.last_n = deque()
self.chunks = 0
+ self.level_changed = False
+ self.last_t = None
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
+ self.edge = self.options['edge']
self.initial_pins = [0]
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
while True:
- pin = self.wait({0: 'e'})
+ if self.edge == 'rising':
+ pin = self.wait({0: 'r'})
+ elif self.edge == 'falling':
+ pin = self.wait({0: 'f'})
+ else:
+ pin = self.wait({0: 'e'})
- if self.oldpin is None:
- self.oldpin = pin
+ if not self.last_samplenum:
self.last_samplenum = self.samplenum
continue
+ samples = self.samplenum - self.last_samplenum
+ t = samples / self.samplerate
- if self.oldpin != pin:
- samples = self.samplenum - self.last_samplenum
- t = samples / self.samplerate
- self.chunks += 1
+ if t > 0:
+ self.last_n.append(t)
+ if len(self.last_n) > self.options['avg_period']:
+ self.last_n.popleft()
- # Don't insert the first chunk into the averaging as it is
- # not complete probably.
- if self.last_samplenum is None or self.chunks < 2:
- # Report the timing normalized.
- self.put(self.last_samplenum, self.samplenum, self.out_ann,
- [0, [normalize_time(t)]])
- else:
- if t > 0:
- self.last_n.append(t)
+ self.put(self.last_samplenum, self.samplenum, self.out_ann,
+ [0, [normalize_time(t)]])
+ if self.options['avg_period'] > 0:
+ self.put(self.last_samplenum, self.samplenum, self.out_ann,
+ [1, [normalize_time(sum(self.last_n) / len(self.last_n))]])
+ if self.last_t and self.options['delta'] == 'yes':
+ self.put(self.last_samplenum, self.samplenum, self.out_ann,
+ [2, [normalize_time(t - self.last_t)]])
- if len(self.last_n) > self.options['avg_period']:
- self.last_n.popleft()
-
- # Report the timing normalized.
- self.put(self.last_samplenum, self.samplenum, self.out_ann,
- [0, [normalize_time(t)]])
- if self.options['avg_period'] > 0:
- self.put(self.last_samplenum, self.samplenum, self.out_ann,
- [1, [normalize_time(sum(self.last_n) / len(self.last_n))]])
-
- # Store data for next round.
- self.last_samplenum = self.samplenum
- self.oldpin = pin
+ self.last_t = t
+ self.last_samplenum = self.samplenum