uint8_t triggerselect;
struct triggerinout triggerinout_conf;
struct triggerlut lut;
- uint8_t regval;
- uint8_t clock_bytes[sizeof(clockselect)];
- size_t clock_idx;
+ uint8_t regval, trgconf_bytes[2], clock_bytes[4], *wrptr;
+ size_t count;
devc = sdi->priv;
}
/* Set trigger pin and light LED on trigger. */
- triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
+ triggerselect = TRGSEL2_LEDSEL1 | (triggerpin & 0x7);
/* Default rising edge. */
if (devc->trigger.fallingmask)
sigma_write_trigger_lut(devc, &lut);
- triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
+ triggerselect = TRGSEL2_LEDSEL1 | TRGSEL2_LEDSEL0;
}
/* Setup trigger in and out pins to default values. */
memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
triggerinout_conf.trgout_bytrigger = 1;
triggerinout_conf.trgout_enable = 1;
-
- sigma_write_register(devc, WRITE_TRIGGER_OPTION,
- (uint8_t *)&triggerinout_conf, sizeof(struct triggerinout));
-
- /* Go back to normal mode. */
+ /* TODO
+ * Verify the correctness of this implementation. The previous
+ * version used to assign to a C language struct with bit fields
+ * which is highly non-portable and hard to guess the resulting
+ * raw memory layout or wire transfer content. The C struct's
+ * field names did not match the vendor documentation's names.
+ * Which means that I could not verify "on paper" either. Let's
+ * re-visit this code later during research for trigger support.
+ */
+ wrptr = trgconf_bytes;
+ regval = 0;
+ if (triggerinout_conf.trgout_bytrigger)
+ regval |= TRGOPT_TRGOOUTEN;
+ write_u8_inc(&wrptr, regval);
+ regval &= ~TRGOPT_CLEAR_MASK;
+ if (triggerinout_conf.trgout_enable)
+ regval |= TRGOPT_TRGOEN;
+ write_u8_inc(&wrptr, regval);
+ count = wrptr - trgconf_bytes;
+ sigma_write_register(devc, WRITE_TRIGGER_OPTION, trgconf_bytes, count);
+
+ /* Leave trigger programming mode. */
sigma_set_register(devc, WRITE_TRIGGER_SELECT2, triggerselect);
/* Set clock select register. */
clockselect.async = 0;
- clockselect.fraction = 1 - 1; /* Divider 1. */
+ clockselect.fraction = 1; /* Divider 1. */
clockselect.disabled_channels = 0x0000; /* All channels enabled. */
if (devc->samplerate == SR_MHZ(200)) {
/* Enable 4 channels. */
- clockselect.disabled_channels = 0xf0ff;
+ clockselect.disabled_channels = 0xfff0;
} else if (devc->samplerate == SR_MHZ(100)) {
/* Enable 8 channels. */
- clockselect.disabled_channels = 0x00ff;
+ clockselect.disabled_channels = 0xff00;
} else {
/*
* 50 MHz mode, or fraction thereof. The 50MHz reference
* (The driver lists a discrete set of sample rates, but
* all of them fit the above description.)
*/
- clockselect.fraction = SR_MHZ(50) / devc->samplerate - 1;
+ clockselect.fraction = SR_MHZ(50) / devc->samplerate;
}
- clock_idx = 0;
- clock_bytes[clock_idx++] = clockselect.async;
- clock_bytes[clock_idx++] = clockselect.fraction;
- clock_bytes[clock_idx++] = clockselect.disabled_channels & 0xff;
- clock_bytes[clock_idx++] = clockselect.disabled_channels >> 8;
- sigma_write_register(devc, WRITE_CLOCK_SELECT, clock_bytes, clock_idx);
+ wrptr = clock_bytes;
+ write_u8_inc(&wrptr, clockselect.async);
+ write_u8_inc(&wrptr, clockselect.fraction - 1);
+ write_u16be_inc(&wrptr, clockselect.disabled_channels);
+ count = wrptr - clock_bytes;
+ sigma_write_register(devc, WRITE_CLOCK_SELECT, clock_bytes, count);
/* Setup maximum post trigger time. */
sigma_set_register(devc, WRITE_POST_TRIGGER,
return ret;
}
-static int sigma_write(struct dev_context *devc, void *buf, size_t size)
+static int sigma_write(struct dev_context *devc, const void *buf, size_t size)
{
int ret;
- ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
+ ret = ftdi_write_data(&devc->ftdic, buf, size);
if (ret < 0)
sr_err("ftdi_write_data failed: %s",
ftdi_get_error_string(&devc->ftdic));
SR_PRIV int sigma_write_register(struct dev_context *devc,
uint8_t reg, uint8_t *data, size_t len)
{
- size_t i;
- uint8_t buf[80];
- int idx = 0;
+ uint8_t buf[80], *wrptr;
+ size_t idx, count;
+ int ret;
- if ((2 * len + 2) > sizeof(buf)) {
+ if (2 + 2 * len > sizeof(buf)) {
sr_err("Write buffer too small to write %zu bytes.", len);
return SR_ERR_BUG;
}
- buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
- buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
-
- for (i = 0; i < len; i++) {
- buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
- buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
+ wrptr = buf;
+ write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
+ write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
+ for (idx = 0; idx < len; idx++) {
+ write_u8_inc(&wrptr, REG_DATA_LOW | (data[idx] & 0xf));
+ write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data[idx] >> 4));
}
+ count = wrptr - buf;
+ ret = sigma_write(devc, buf, count);
+ if (ret != SR_OK)
+ return ret;
- return sigma_write(devc, buf, idx);
+ return SR_OK;
}
SR_PRIV int sigma_set_register(struct dev_context *devc,
static int sigma_read_register(struct dev_context *devc,
uint8_t reg, uint8_t *data, size_t len)
{
- uint8_t buf[3];
-
- buf[0] = REG_ADDR_LOW | (reg & 0xf);
- buf[1] = REG_ADDR_HIGH | (reg >> 4);
- buf[2] = REG_READ_ADDR;
+ uint8_t buf[3], *wrptr;
- sigma_write(devc, buf, sizeof(buf));
+ wrptr = buf;
+ write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
+ write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
+ write_u8_inc(&wrptr, REG_READ_ADDR);
+ sigma_write(devc, buf, wrptr - buf);
return sigma_read(devc, data, len);
}
* Read 6 registers starting at trigger position LSB.
* Which yields two 24bit counter values.
*/
- uint8_t buf[] = {
+ const uint8_t buf[] = {
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
- };
+ }, *rdptr;
uint8_t result[6];
sigma_write(devc, buf, sizeof(buf));
sigma_read(devc, result, sizeof(result));
- *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
- *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
+ rdptr = &result[0];
+ *triggerpos = read_u24le_inc(&rdptr);
+ *stoppos = read_u24le_inc(&rdptr);
/*
- * These "position" values point to after the event (end of
- * capture data, trigger condition matched). This is why they
- * get decremented here. Sample memory consists of 512-byte
- * chunks with meta data in the upper 64 bytes. Thus when the
- * decrements takes us into this upper part of the chunk, then
- * further move backwards to the end of the chunk's data part.
+ * These positions consist of "the memory row" in the MSB fields,
+ * and "an event index" within the row in the LSB fields. Part
+ * of the memory row's content is sample data, another part is
+ * timestamps.
*
- * TODO Re-consider the above comment's validity. It's true
- * that a 1024byte row contains 512 u16 entities, of which 64
- * are timestamps and 448 are events with sample data. It's not
- * true that 64bytes of metadata reside at the top of a 512byte
- * block in a row.
- *
- * TODO Use ROW_MASK and CLUSTERS_PER_ROW here?
+ * The retrieved register values point to after the captured
+ * position. So they need to get decremented, and adjusted to
+ * cater for the timestamps when the decrement carries over to
+ * a different memory row.
*/
- if ((--*stoppos & 0x1ff) == 0x1ff)
- *stoppos -= 64;
- if ((--*triggerpos & 0x1ff) == 0x1ff)
- *triggerpos -= 64;
+ if ((--*stoppos & ROW_MASK) == ROW_MASK)
+ *stoppos -= CLUSTERS_PER_ROW;
+ if ((--*triggerpos & ROW_MASK) == ROW_MASK)
+ *triggerpos -= CLUSTERS_PER_ROW;
- return 1;
+ return SR_OK;
}
static int sigma_read_dram(struct dev_context *devc,
uint16_t startchunk, size_t numchunks, uint8_t *data)
{
- uint8_t buf[4096];
- int idx;
+ uint8_t buf[128], *wrptr;
size_t chunk;
int sel;
gboolean is_last;
+ if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
+ sr_err("Read buffer too small to read %zu DRAM rows", numchunks);
+ return SR_ERR_BUG;
+ }
+
/* Communicate DRAM start address (memory row, aka samples line). */
- idx = 0;
- buf[idx++] = startchunk >> 8;
- buf[idx++] = startchunk & 0xff;
- sigma_write_register(devc, WRITE_MEMROW, buf, idx);
+ wrptr = buf;
+ write_u8_inc(&wrptr, startchunk >> 8);
+ write_u8_inc(&wrptr, startchunk & 0xff);
+ sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
/*
* Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
* then transfer via USB. Interleave the FPGA's DRAM access and
* USB transfer, use alternating buffers (0/1) in the process.
*/
- idx = 0;
- buf[idx++] = REG_DRAM_BLOCK;
- buf[idx++] = REG_DRAM_WAIT_ACK;
+ wrptr = buf;
+ write_u8_inc(&wrptr, REG_DRAM_BLOCK);
+ write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
for (chunk = 0; chunk < numchunks; chunk++) {
sel = chunk % 2;
is_last = chunk == numchunks - 1;
if (!is_last)
- buf[idx++] = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
- buf[idx++] = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
+ write_u8_inc(&wrptr, REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel));
+ write_u8_inc(&wrptr, REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel));
if (!is_last)
- buf[idx++] = REG_DRAM_WAIT_ACK;
+ write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
}
- sigma_write(devc, buf, idx);
+ sigma_write(devc, buf, wrptr - buf);
return sigma_read(devc, data, numchunks * ROW_LENGTH_BYTES);
}
int i;
uint8_t tmp[2];
uint16_t bit;
+ uint8_t buf[6], *wrptr, regval;
/* Transpose the table and send to Sigma. */
for (i = 0; i < 16; i++) {
if (lut->m1d[3] & bit)
tmp[1] |= 0x80;
- sigma_write_register(devc, WRITE_TRIGGER_SELECT,
- tmp, sizeof(tmp));
+ /*
+ * This logic seems redundant, but separates the value
+ * determination from the wire format, and is useful
+ * during future maintenance and research.
+ */
+ wrptr = buf;
+ write_u8_inc(&wrptr, tmp[0]);
+ write_u8_inc(&wrptr, tmp[1]);
+ sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x30 | i);
}
/* Send the parameters */
- sigma_write_register(devc, WRITE_TRIGGER_SELECT,
- (uint8_t *)&lut->params, sizeof(lut->params));
+ wrptr = buf;
+ regval = 0;
+ regval |= lut->params.selc << 6;
+ regval |= lut->params.selpresc << 0;
+ write_u8_inc(&wrptr, regval);
+ regval = 0;
+ regval |= lut->params.selinc << 6;
+ regval |= lut->params.selres << 4;
+ regval |= lut->params.sela << 2;
+ regval |= lut->params.selb << 0;
+ write_u8_inc(&wrptr, regval);
+ write_u16le_inc(&wrptr, lut->params.cmpb);
+ write_u16le_inc(&wrptr, lut->params.cmpa);
+ sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
return SR_OK;
}
*/
static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
{
- uint8_t suicide[] = {
+ const uint8_t suicide[] = {
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D2,
};
- uint8_t init_array[] = {
+ const uint8_t init_array[] = {
BB_PIN_CCLK,
BB_PIN_CCLK | BB_PIN_PROG,
BB_PIN_CCLK | BB_PIN_PROG,
/* Wait until the FPGA asserts INIT_B. */
retries = 10;
while (retries--) {
- ret = sigma_read(devc, &data, 1);
+ ret = sigma_read(devc, &data, sizeof(data));
if (ret < 0)
return ret;
if (data & BB_PIN_INIT)
*/
static int sigma_fpga_init_la(struct dev_context *devc)
{
- /*
- * TODO Construct the sequence at runtime? Such that request data
- * and response check values will match more apparently?
- */
- uint8_t mode_regval = WMR_SDRAMINIT;
- uint8_t logic_mode_start[] = {
- /* Read ID register. */
- REG_ADDR_LOW | (READ_ID & 0xf),
- REG_ADDR_HIGH | (READ_ID >> 4),
- REG_READ_ADDR,
-
- /* Write 0x55 to scratch register, read back. */
- REG_ADDR_LOW | (WRITE_TEST & 0xf),
- REG_DATA_LOW | 0x5,
- REG_DATA_HIGH_WRITE | 0x5,
- REG_READ_ADDR,
-
- /* Write 0xaa to scratch register, read back. */
- REG_DATA_LOW | 0xa,
- REG_DATA_HIGH_WRITE | 0xa,
- REG_READ_ADDR,
-
- /* Initiate SDRAM initialization in mode register. */
- REG_ADDR_LOW | (WRITE_MODE & 0xf),
- REG_DATA_LOW | (mode_regval & 0xf),
- REG_DATA_HIGH_WRITE | (mode_regval >> 4),
- };
+ uint8_t buf[16], *wrptr;
+ uint8_t data_55, data_aa, mode;
uint8_t result[3];
+ const uint8_t *rdptr;
int ret;
+ wrptr = buf;
+
+ /* Read ID register. */
+ write_u8_inc(&wrptr, REG_ADDR_LOW | (READ_ID & 0xf));
+ write_u8_inc(&wrptr, REG_ADDR_HIGH | (READ_ID >> 4));
+ write_u8_inc(&wrptr, REG_READ_ADDR);
+
+ /* Write 0x55 to scratch register, read back. */
+ data_55 = 0x55;
+ write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
+ write_u8_inc(&wrptr, REG_DATA_LOW | (data_55 & 0xf));
+ write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_55 >> 4));
+ write_u8_inc(&wrptr, REG_READ_ADDR);
+
+ /* Write 0xaa to scratch register, read back. */
+ data_aa = 0xaa;
+ write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
+ write_u8_inc(&wrptr, REG_DATA_LOW | (data_aa & 0xf));
+ write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_aa >> 4));
+ write_u8_inc(&wrptr, REG_READ_ADDR);
+
+ /* Initiate SDRAM initialization in mode register. */
+ mode = WMR_SDRAMINIT;
+ write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_MODE & 0xf));
+ write_u8_inc(&wrptr, REG_DATA_LOW | (mode & 0xf));
+ write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (mode >> 4));
+
/*
* Send the command sequence which contains 3 READ requests.
* Expect to see the corresponding 3 response bytes.
*/
- sigma_write(devc, logic_mode_start, sizeof(logic_mode_start));
+ sigma_write(devc, buf, wrptr - buf);
ret = sigma_read(devc, result, ARRAY_SIZE(result));
- if (ret != ARRAY_SIZE(result))
- goto err;
- if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
- goto err;
+ if (ret != ARRAY_SIZE(result)) {
+ sr_err("Insufficient start response length.");
+ return SR_ERR_IO;
+ }
+ rdptr = result;
+ if (read_u8_inc(&rdptr) != 0xa6) {
+ sr_err("Unexpected ID response.");
+ return SR_ERR_DATA;
+ }
+ if (read_u8_inc(&rdptr) != data_55) {
+ sr_err("Unexpected scratch read-back (55).");
+ return SR_ERR_DATA;
+ }
+ if (read_u8_inc(&rdptr) != data_aa) {
+ sr_err("Unexpected scratch read-back (aa).");
+ return SR_ERR_DATA;
+ }
return SR_OK;
-
-err:
- sr_err("Configuration failed. Invalid reply received.");
- return SR_ERR;
}
/*
enum sigma_firmware_idx firmware_idx)
{
int ret;
- unsigned char *buf;
- unsigned char pins;
+ uint8_t *buf;
+ uint8_t pins;
size_t buf_size;
const char *firmware;
return SR_ERR;
}
ftdi_usb_purge_buffers(&devc->ftdic);
- while (sigma_read(devc, &pins, 1) == 1)
+ while (sigma_read(devc, &pins, sizeof(pins)) > 0)
;
/* Initialize the FPGA for logic-analyzer mode. */
* enforcement of user specified limits is exact.
*/
while (count--) {
- WL16(buffer->write_pointer, sample);
- buffer->write_pointer += buffer->unit_size;
+ write_u16le_inc(&buffer->write_pointer, sample);
buffer->curr_samples++;
if (buffer->curr_samples == buffer->max_samples) {
ret = flush_submit_buffer(devc);
/* Ignore disabled channels with a trigger. */
if (!match->channel->enabled)
continue;
- channelbit = 1 << (match->channel->index);
+ channelbit = 1 << match->channel->index;
if (devc->samplerate >= SR_MHZ(100)) {
/* Fast trigger support. */
if (trigger_set) {
"supported in 100 and 200MHz mode.");
return SR_ERR;
}
- if (match->match == SR_TRIGGER_FALLING)
+ if (match->match == SR_TRIGGER_FALLING) {
devc->trigger.fallingmask |= channelbit;
- else if (match->match == SR_TRIGGER_RISING)
+ } else if (match->match == SR_TRIGGER_RISING) {
devc->trigger.risingmask |= channelbit;
- else {
+ } else {
sr_err("Only rising/falling trigger is "
"supported in 100 and 200MHz mode.");
return SR_ERR;
static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
struct sigma_trigger *t)
{
+ const uint8_t *rdptr;
int i;
- uint16_t sample = 0;
+ uint16_t sample;
+ rdptr = samples;
+ sample = 0;
for (i = 0; i < 8; i++) {
if (i > 0)
last_sample = sample;
- sample = samples[2 * i] | (samples[2 * i + 1] << 8);
+ sample = read_u16le_inc(&rdptr);
/* Simple triggers. */
if ((sample & t->simplemask) != t->simplevalue)
*/
static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
{
- return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
+ return read_u16le(&cluster->timestamp[0]);
}
/*
*/
static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
{
- uint16_t sample;
-
- sample = 0;
- sample |= cl->samples[idx].sample_lo << 0;
- sample |= cl->samples[idx].sample_hi << 8;
- sample = (sample >> 8) | (sample << 8);
- return sample;
+ return read_u16le(&cl->samples[idx].sample[0]);
}
/*
*/
sigma_set_register(devc, WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN);
do {
- if (sigma_read_register(devc, READ_MODE, &modestatus, 1) != 1) {
- sr_err("failed while waiting for RMR_POSTTRIGGERED bit");
+ ret = sigma_read_register(devc, READ_MODE,
+ &modestatus, sizeof(modestatus));
+ if (ret != sizeof(modestatus)) {
+ sr_err("Could not poll for post-trigger condition.");
return FALSE;
}
} while (!(modestatus & RMR_POSTTRIGGERED));
sigma_read_pos(devc, &stoppos, &triggerpos);
/* Check if trigger has fired. */
- if (sigma_read_register(devc, READ_MODE, &modestatus, 1) != 1) {
- sr_err("failed to read READ_MODE register");
+ ret = sigma_read_register(devc, READ_MODE,
+ &modestatus, sizeof(modestatus));
+ if (ret != sizeof(modestatus)) {
+ sr_err("Could not query trigger hit.");
return FALSE;
}
trg_line = ~0;
trg_event = ~0;
if (modestatus & RMR_TRIGGERED) {
- trg_line = triggerpos >> 9;
- trg_event = triggerpos & 0x1ff;
+ trg_line = triggerpos >> ROW_SHIFT;
+ trg_event = triggerpos & ROW_MASK;
}
/*
for (i = 0; i < dl_lines_curr; i++) {
uint32_t trigger_event = ~0;
- /* The last "DRAM line" can be only partially full. */
+ /* The last "DRAM line" need not span its full length. */
if (dl_lines_done + i == dl_lines_total - 1)
- dl_events_in_line = stoppos & 0x1ff;
+ dl_events_in_line = stoppos & ROW_MASK;
/* Test if the trigger happened on this line. */
if (dl_lines_done + i == trg_line)
entry[i] = 0xffff;
/* For each bit in LUT. */
- for (j = 0; j < 16; j++)
+ for (j = 0; j < 16; j++) {
/* For each channel in quad. */
for (k = 0; k < 4; k++) {
(!(j & (1 << k)))))
entry[i] &= ~(1 << j);
}
+ }
}
}