static GSList *device_instances = NULL;
-// XXX These should be per device
-static struct ftdi_context ftdic;
-static uint64_t cur_samplerate = 0;
-static uint32_t limit_msec = 0;
-static struct timeval start_tv;
-static int cur_firmware = -1;
-static int num_probes = 0;
-static int samples_per_event = 0;
-static int capture_ratio = 50;
-static struct sigma_trigger trigger;
-static struct sigma_state sigma;
-
static uint64_t supported_samplerates[] = {
KHZ(200),
KHZ(250),
static void hw_stop_acquisition(int device_index, gpointer session_device_id);
-static int sigma_read(void *buf, size_t size)
+static int sigma_read(void *buf, size_t size, struct sigma *sigma)
{
int ret;
- ret = ftdi_read_data(&ftdic, (unsigned char *)buf, size);
+ ret = ftdi_read_data(&sigma->ftdic, (unsigned char *)buf, size);
if (ret < 0) {
g_warning("ftdi_read_data failed: %s",
- ftdi_get_error_string(&ftdic));
+ ftdi_get_error_string(&sigma->ftdic));
}
return ret;
}
-static int sigma_write(void *buf, size_t size)
+static int sigma_write(void *buf, size_t size, struct sigma *sigma)
{
int ret;
- ret = ftdi_write_data(&ftdic, (unsigned char *)buf, size);
+ ret = ftdi_write_data(&sigma->ftdic, (unsigned char *)buf, size);
if (ret < 0) {
g_warning("ftdi_write_data failed: %s",
- ftdi_get_error_string(&ftdic));
+ ftdi_get_error_string(&sigma->ftdic));
} else if ((size_t) ret != size) {
g_warning("ftdi_write_data did not complete write\n");
}
return ret;
}
-static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len)
+static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
+ struct sigma *sigma)
{
size_t i;
uint8_t buf[len + 2];
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
}
- return sigma_write(buf, idx);
+ return sigma_write(buf, idx, sigma);
}
-static int sigma_set_register(uint8_t reg, uint8_t value)
+static int sigma_set_register(uint8_t reg, uint8_t value, struct sigma *sigma)
{
- return sigma_write_register(reg, &value, 1);
+ return sigma_write_register(reg, &value, 1, sigma);
}
-static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len)
+static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
+ struct sigma *sigma)
{
uint8_t buf[3];
buf[1] = REG_ADDR_HIGH | (reg >> 4);
buf[2] = REG_READ_ADDR;
- sigma_write(buf, sizeof(buf));
+ sigma_write(buf, sizeof(buf), sigma);
- return sigma_read(data, len);
+ return sigma_read(data, len, sigma);
}
-static uint8_t sigma_get_register(uint8_t reg)
+static uint8_t sigma_get_register(uint8_t reg, struct sigma *sigma)
{
uint8_t value;
- if (1 != sigma_read_register(reg, &value, 1)) {
+ if (1 != sigma_read_register(reg, &value, 1, sigma)) {
g_warning("Sigma_get_register: 1 byte expected");
return 0;
}
return value;
}
-static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos)
+static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
+ struct sigma *sigma)
{
uint8_t buf[] = {
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
};
uint8_t result[6];
- sigma_write(buf, sizeof(buf));
+ sigma_write(buf, sizeof(buf), sigma);
- sigma_read(result, sizeof(result));
+ sigma_read(result, sizeof(result), sigma);
*triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
*stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
return 1;
}
-static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data)
+static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
+ uint8_t *data, struct sigma *sigma)
{
size_t i;
uint8_t buf[4096];
/* Send the startchunk. Index start with 1. */
buf[0] = startchunk >> 8;
buf[1] = startchunk & 0xff;
- sigma_write_register(WRITE_MEMROW, buf, 2);
+ sigma_write_register(WRITE_MEMROW, buf, 2, sigma);
/* Read the DRAM. */
buf[idx++] = REG_DRAM_BLOCK;
buf[idx++] = REG_DRAM_WAIT_ACK;
}
- sigma_write(buf, idx);
+ sigma_write(buf, idx, sigma);
- return sigma_read(data, numchunks * CHUNK_SIZE);
+ return sigma_read(data, numchunks * CHUNK_SIZE, sigma);
}
/* Upload trigger look-up tables to Sigma. */
-static int sigma_write_trigger_lut(struct triggerlut *lut)
+static int sigma_write_trigger_lut(struct triggerlut *lut, struct sigma *sigma)
{
int i;
uint8_t tmp[2];
if (lut->m1d[3] & bit)
tmp[1] |= 0x80;
- sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp));
- sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i);
+ sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
+ sigma);
+ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, sigma);
}
/* Send the parameters */
sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
- sizeof(lut->params));
+ sizeof(lut->params), sigma);
return SIGROK_OK;
}
static int hw_init(char *deviceinfo)
{
struct sigrok_device_instance *sdi;
+ struct sigma *sigma = g_malloc(sizeof(struct sigma));
deviceinfo = deviceinfo;
- ftdi_init(&ftdic);
+ if (!sigma)
+ return 0;
+
+ ftdi_init(&sigma->ftdic);
/* Look for SIGMAs. */
- if (ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT,
+ if (ftdi_usb_open_desc(&sigma->ftdic, USB_VENDOR, USB_PRODUCT,
USB_DESCRIPTION, NULL) < 0)
- return 0;
+ goto free;
+
+ sigma->cur_samplerate = 0;
+ sigma->limit_msec = 0;
+ sigma->cur_firmware = -1;
+ sigma->num_probes = 0;
+ sigma->samples_per_event = 0;
+ sigma->capture_ratio = 50;
/* Register SIGMA device. */
sdi = sigrok_device_instance_new(0, ST_INITIALIZING,
USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
if (!sdi)
- return 0;
+ goto free;
+
+ sdi->priv = sigma;
device_instances = g_slist_append(device_instances, sdi);
/* We will open the device again when we need it. */
- ftdi_usb_close(&ftdic);
+ ftdi_usb_close(&sigma->ftdic);
return 1;
+free:
+ free(sigma);
+ return 0;
}
-static int upload_firmware(int firmware_idx)
+static int upload_firmware(int firmware_idx, struct sigma *sigma)
{
int ret;
unsigned char *buf;
char firmware_path[128];
/* Make sure it's an ASIX SIGMA. */
- if ((ret = ftdi_usb_open_desc(&ftdic,
+ if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
g_warning("ftdi_usb_open failed: %s",
- ftdi_get_error_string(&ftdic));
+ ftdi_get_error_string(&sigma->ftdic));
return 0;
}
- if ((ret = ftdi_set_bitmode(&ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
+ if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
g_warning("ftdi_set_bitmode failed: %s",
- ftdi_get_error_string(&ftdic));
+ ftdi_get_error_string(&sigma->ftdic));
return 0;
}
/* Four times the speed of sigmalogan - Works well. */
- if ((ret = ftdi_set_baudrate(&ftdic, 750000)) < 0) {
+ if ((ret = ftdi_set_baudrate(&sigma->ftdic, 750000)) < 0) {
g_warning("ftdi_set_baudrate failed: %s",
- ftdi_get_error_string(&ftdic));
+ ftdi_get_error_string(&sigma->ftdic));
return 0;
}
/* Force the FPGA to reboot. */
- sigma_write(suicide, sizeof(suicide));
- sigma_write(suicide, sizeof(suicide));
- sigma_write(suicide, sizeof(suicide));
- sigma_write(suicide, sizeof(suicide));
+ sigma_write(suicide, sizeof(suicide), sigma);
+ sigma_write(suicide, sizeof(suicide), sigma);
+ sigma_write(suicide, sizeof(suicide), sigma);
+ sigma_write(suicide, sizeof(suicide), sigma);
/* Prepare to upload firmware (FPGA specific). */
- sigma_write(init, sizeof(init));
+ sigma_write(init, sizeof(init), sigma);
- ftdi_usb_purge_buffers(&ftdic);
+ ftdi_usb_purge_buffers(&sigma->ftdic);
/* Wait until the FPGA asserts INIT_B. */
while (1) {
- ret = sigma_read(result, 1);
+ ret = sigma_read(result, 1, sigma);
if (result[0] & 0x20)
break;
}
}
/* Upload firmare. */
- sigma_write(buf, buf_size);
+ sigma_write(buf, buf_size, sigma);
g_free(buf);
- if ((ret = ftdi_set_bitmode(&ftdic, 0x00, BITMODE_RESET)) < 0) {
+ if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0x00, BITMODE_RESET)) < 0) {
g_warning("ftdi_set_bitmode failed: %s",
- ftdi_get_error_string(&ftdic));
+ ftdi_get_error_string(&sigma->ftdic));
return SIGROK_ERR;
}
- ftdi_usb_purge_buffers(&ftdic);
+ ftdi_usb_purge_buffers(&sigma->ftdic);
/* Discard garbage. */
- while (1 == sigma_read(&pins, 1))
+ while (1 == sigma_read(&pins, 1, sigma))
;
/* Initialize the logic analyzer mode. */
- sigma_write(logic_mode_start, sizeof(logic_mode_start));
+ sigma_write(logic_mode_start, sizeof(logic_mode_start), sigma);
/* Expect a 3 byte reply. */
- ret = sigma_read(result, 3);
+ ret = sigma_read(result, 3, sigma);
if (ret != 3 ||
result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
g_warning("Configuration failed. Invalid reply received.");
return SIGROK_ERR;
}
- cur_firmware = firmware_idx;
+ sigma->cur_firmware = firmware_idx;
return SIGROK_OK;
}
static int hw_opendev(int device_index)
{
struct sigrok_device_instance *sdi;
+ struct sigma *sigma;
int ret;
+ if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
+ return SIGROK_ERR;
+
+ sigma = sdi->priv;
+
/* Make sure it's an ASIX SIGMA. */
- if ((ret = ftdi_usb_open_desc(&ftdic,
+ if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
g_warning("ftdi_usb_open failed: %s",
- ftdi_get_error_string(&ftdic));
+ ftdi_get_error_string(&sigma->ftdic));
return 0;
}
- if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
- return SIGROK_ERR;
-
sdi->status = ST_ACTIVE;
return SIGROK_OK;
uint64_t samplerate)
{
int i, ret;
-
- sdi = sdi;
+ struct sigma *sigma = sdi->priv;
for (i = 0; supported_samplerates[i]; i++) {
if (supported_samplerates[i] == samplerate)
return SIGROK_ERR_SAMPLERATE;
if (samplerate <= MHZ(50)) {
- ret = upload_firmware(0);
- num_probes = 16;
+ ret = upload_firmware(0, sigma);
+ sigma->num_probes = 16;
}
if (samplerate == MHZ(100)) {
- ret = upload_firmware(1);
- num_probes = 8;
+ ret = upload_firmware(1, sigma);
+ sigma->num_probes = 8;
}
else if (samplerate == MHZ(200)) {
- ret = upload_firmware(2);
- num_probes = 4;
+ ret = upload_firmware(2, sigma);
+ sigma->num_probes = 4;
}
- cur_samplerate = samplerate;
- samples_per_event = 16 / num_probes;
- sigma.state = SIGMA_IDLE;
+ sigma->cur_samplerate = samplerate;
+ sigma->samples_per_event = 16 / sigma->num_probes;
+ sigma->state.state = SIGMA_IDLE;
g_message("Firmware uploaded");
* The Sigma supports complex triggers using boolean expressions, but this
* has not been implemented yet.
*/
-static int configure_probes(GSList *probes)
+static int configure_probes(struct sigrok_device_instance *sdi, GSList *probes)
{
+ struct sigma *sigma = sdi->priv;
struct probe *probe;
GSList *l;
int trigger_set = 0;
int probebit;
- memset(&trigger, 0, sizeof(struct sigma_trigger));
+ memset(&sigma->trigger, 0, sizeof(struct sigma_trigger));
for (l = probes; l; l = l->next) {
probe = (struct probe *)l->data;
if (!probe->enabled || !probe->trigger)
continue;
- if (cur_samplerate >= MHZ(100)) {
+ if (sigma->cur_samplerate >= MHZ(100)) {
/* Fast trigger support. */
if (trigger_set) {
g_warning("Asix Sigma only supports a single "
return SIGROK_ERR;
}
if (probe->trigger[0] == 'f')
- trigger.fallingmask |= probebit;
+ sigma->trigger.fallingmask |= probebit;
else if (probe->trigger[0] == 'r')
- trigger.risingmask |= probebit;
+ sigma->trigger.risingmask |= probebit;
else {
g_warning("Asix Sigma only supports "
"rising/falling trigger in 100 "
} else {
/* Simple trigger support (event). */
if (probe->trigger[0] == '1') {
- trigger.simplevalue |= probebit;
- trigger.simplemask |= probebit;
+ sigma->trigger.simplevalue |= probebit;
+ sigma->trigger.simplemask |= probebit;
}
else if (probe->trigger[0] == '0') {
- trigger.simplevalue &= ~probebit;
- trigger.simplemask |= probebit;
+ sigma->trigger.simplevalue &= ~probebit;
+ sigma->trigger.simplemask |= probebit;
}
else if (probe->trigger[0] == 'f') {
- trigger.fallingmask |= probebit;
+ sigma->trigger.fallingmask |= probebit;
++trigger_set;
}
else if (probe->trigger[0] == 'r') {
- trigger.risingmask |= probebit;
+ sigma->trigger.risingmask |= probebit;
++trigger_set;
}
static void hw_closedev(int device_index)
{
struct sigrok_device_instance *sdi;
+ struct sigma *sigma;
if ((sdi = get_sigrok_device_instance(device_instances, device_index)))
{
+ sigma = sdi->priv;
if (sdi->status == ST_ACTIVE)
- ftdi_usb_close(&ftdic);
+ ftdi_usb_close(&sigma->ftdic);
sdi->status = ST_INACTIVE;
}
static void hw_cleanup(void)
{
+ GSList *l;
+ struct sigrok_device_instance *sdi;
+
+ /* Properly close all devices. */
+ for (l = device_instances; l; l = l->next) {
+ sdi = l->data;
+ if (sdi->priv != NULL)
+ free(sdi->priv);
+ sigrok_device_instance_free(sdi);
+ }
+ g_slist_free(device_instances);
+ device_instances = NULL;
}
static void *hw_get_device_info(int device_index, int device_info_id)
{
struct sigrok_device_instance *sdi;
+ struct sigma *sigma;
void *info = NULL;
if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) {
return NULL;
}
+ sigma = sdi->priv;
+
switch (device_info_id) {
case DI_INSTANCE:
info = sdi;
info = (char *)TRIGGER_TYPES;
break;
case DI_CUR_SAMPLERATE:
- info = &cur_samplerate;
+ info = &sigma->cur_samplerate;
break;
}
static int hw_set_configuration(int device_index, int capability, void *value)
{
struct sigrok_device_instance *sdi;
+ struct sigma *sigma;
int ret;
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR;
+ sigma = sdi->priv;
+
if (capability == HWCAP_SAMPLERATE) {
ret = set_samplerate(sdi, *(uint64_t*) value);
} else if (capability == HWCAP_PROBECONFIG) {
- ret = configure_probes(value);
+ ret = configure_probes(sdi, value);
} else if (capability == HWCAP_LIMIT_MSEC) {
- limit_msec = strtoull(value, NULL, 10);
+ sigma->limit_msec = strtoull(value, NULL, 10);
ret = SIGROK_OK;
} else if (capability == HWCAP_CAPTURE_RATIO) {
- capture_ratio = strtoull(value, NULL, 10);
+ sigma->capture_ratio = strtoull(value, NULL, 10);
ret = SIGROK_OK;
- } else if (capability == HWCAP_PROBECONFIG) {
- ret = configure_probes((GSList *) value);
} else {
ret = SIGROK_ERR;
}
static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
uint16_t *lastsample, int triggerpos, void *user_data)
{
+ struct sigrok_device_instance *sdi = user_data;
+ struct sigma *sigma = sdi->priv;
uint16_t tsdiff, ts;
- uint16_t samples[65536 * samples_per_event];
+ uint16_t samples[65536 * sigma->samples_per_event];
struct datafeed_packet packet;
int i, j, k, l, numpad, tosend;
size_t n = 0, sent = 0;
- int clustersize = EVENTS_PER_CLUSTER * samples_per_event;
+ int clustersize = EVENTS_PER_CLUSTER * sigma->samples_per_event;
uint16_t *event;
uint16_t cur_sample;
int triggerts = -1;
/* Check if trigger is in this chunk. */
if (triggerpos != -1) {
- if (cur_samplerate <= MHZ(50))
+ if (sigma->cur_samplerate <= MHZ(50))
triggerpos -= EVENTS_PER_CLUSTER - 1;
if (triggerpos < 0)
*lastts = ts;
/* Pad last sample up to current point. */
- numpad = tsdiff * samples_per_event - clustersize;
+ numpad = tsdiff * sigma->samples_per_event - clustersize;
if (numpad > 0) {
for (j = 0; j < numpad; ++j)
samples[j] = *lastsample;
packet.length = tosend * sizeof(uint16_t);
packet.unitsize = 2;
packet.payload = samples + sent;
- session_bus(user_data, &packet);
+ session_bus(sigma->session_id, &packet);
sent += tosend;
}
for (j = 0; j < 7; ++j) {
/* For each sample in event. */
- for (k = 0; k < samples_per_event; ++k) {
+ for (k = 0; k < sigma->samples_per_event; ++k) {
cur_sample = 0;
/* For each probe. */
- for (l = 0; l < num_probes; ++l)
+ for (l = 0; l < sigma->num_probes; ++l)
cur_sample |= (!!(event[j] & (1 << (l *
- samples_per_event + k))))
+ sigma->samples_per_event
+ + k))))
<< l;
samples[n++] = cur_sample;
* samples to pinpoint the exact position of the trigger.
*/
tosend = get_trigger_offset(samples, *lastsample,
- &trigger);
+ &sigma->trigger);
if (tosend > 0) {
packet.type = DF_LOGIC;
packet.length = tosend * sizeof(uint16_t);
packet.unitsize = 2;
packet.payload = samples;
- session_bus(user_data, &packet);
+ session_bus(sigma->session_id, &packet);
sent += tosend;
}
packet.type = DF_TRIGGER;
packet.length = 0;
packet.payload = 0;
- session_bus(user_data, &packet);
+ session_bus(sigma->session_id, &packet);
}
/* Send rest of the chunk to sigrok. */
packet.length = tosend * sizeof(uint16_t);
packet.unitsize = 2;
packet.payload = samples + sent;
- session_bus(user_data, &packet);
+ session_bus(sigma->session_id, &packet);
*lastsample = samples[n - 1];
}
static int receive_data(int fd, int revents, void *user_data)
{
+ struct sigrok_device_instance *sdi = user_data;
+ struct sigma *sigma = sdi->priv;
struct datafeed_packet packet;
const int chunks_per_read = 32;
unsigned char buf[chunks_per_read * CHUNK_SIZE];
fd = fd;
revents = revents;
- numchunks = sigma.stoppos / 512;
+ numchunks = sigma->state.stoppos / 512;
- if (sigma.state == SIGMA_IDLE)
+ if (sigma->state.state == SIGMA_IDLE)
return FALSE;
- if (sigma.state == SIGMA_CAPTURE) {
+ if (sigma->state.state == SIGMA_CAPTURE) {
/* Check if the timer has expired, or memory is full. */
gettimeofday(&tv, 0);
- running_msec = (tv.tv_sec - start_tv.tv_sec) * 1000 +
- (tv.tv_usec - start_tv.tv_usec) / 1000;
+ running_msec = (tv.tv_sec - sigma->start_tv.tv_sec) * 1000 +
+ (tv.tv_usec - sigma->start_tv.tv_usec) / 1000;
- if (running_msec < limit_msec && numchunks < 32767)
+ if (running_msec < sigma->limit_msec && numchunks < 32767)
return FALSE;
- hw_stop_acquisition(-1, user_data);
+ hw_stop_acquisition(sdi->index, user_data);
return FALSE;
- } else if (sigma.state == SIGMA_DOWNLOAD) {
- if (sigma.chunks_downloaded >= numchunks) {
+ } else if (sigma->state.state == SIGMA_DOWNLOAD) {
+ if (sigma->state.chunks_downloaded >= numchunks) {
/* End of samples. */
packet.type = DF_END;
packet.length = 0;
- session_bus(user_data, &packet);
+ session_bus(sigma->session_id, &packet);
- sigma.state = SIGMA_IDLE;
+ sigma->state.state = SIGMA_IDLE;
return TRUE;
}
newchunks = MIN(chunks_per_read,
- numchunks - sigma.chunks_downloaded);
+ numchunks - sigma->state.chunks_downloaded);
g_message("Downloading sample data: %.0f %%",
- 100.0 * sigma.chunks_downloaded / numchunks);
+ 100.0 * sigma->state.chunks_downloaded / numchunks);
- bufsz = sigma_read_dram(sigma.chunks_downloaded,
- newchunks, buf);
+ bufsz = sigma_read_dram(sigma->state.chunks_downloaded,
+ newchunks, buf, sigma);
/* Find first ts. */
- if (sigma.chunks_downloaded == 0) {
- sigma.lastts = *(uint16_t *) buf - 1;
- sigma.lastsample = 0;
+ if (sigma->state.chunks_downloaded == 0) {
+ sigma->state.lastts = *(uint16_t *) buf - 1;
+ sigma->state.lastsample = 0;
}
/* Decode chunks and send them to sigrok. */
for (i = 0; i < newchunks; ++i) {
- if (sigma.chunks_downloaded + i == sigma.triggerchunk)
+ if (sigma->state.chunks_downloaded + i == sigma->state.triggerchunk)
decode_chunk_ts(buf + (i * CHUNK_SIZE),
- &sigma.lastts, &sigma.lastsample,
- sigma.triggerpos & 0x1ff,
+ &sigma->state.lastts,
+ &sigma->state.lastsample,
+ sigma->state.triggerpos & 0x1ff,
user_data);
else
decode_chunk_ts(buf + (i * CHUNK_SIZE),
- &sigma.lastts, &sigma.lastsample,
+ &sigma->state.lastts,
+ &sigma->state.lastsample,
-1, user_data);
}
- sigma.chunks_downloaded += newchunks;
+ sigma->state.chunks_downloaded += newchunks;
}
return TRUE;
* simple pin change and state triggers. Only two transitions (rise/fall) can be
* set at any time, but a full mask and value can be set (0/1).
*/
-static int build_basic_trigger(struct triggerlut *lut)
+static int build_basic_trigger(struct triggerlut *lut, struct sigma *sigma)
{
int i,j;
uint16_t masks[2] = { 0, 0 };
lut->m4 = 0xa000;
/* Value/mask trigger support. */
- build_lut_entry(trigger.simplevalue, trigger.simplemask, lut->m2d);
+ build_lut_entry(sigma->trigger.simplevalue, sigma->trigger.simplemask,
+ lut->m2d);
/* Rise/fall trigger support. */
for (i = 0, j = 0; i < 16; ++i) {
- if (trigger.risingmask & (1 << i) ||
- trigger.fallingmask & (1 << i))
+ if (sigma->trigger.risingmask & (1 << i) ||
+ sigma->trigger.fallingmask & (1 << i))
masks[j++] = 1 << i;
}
/* Add glue logic */
if (masks[0] || masks[1]) {
/* Transition trigger. */
- if (masks[0] & trigger.risingmask)
+ if (masks[0] & sigma->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
- if (masks[0] & trigger.fallingmask)
+ if (masks[0] & sigma->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
- if (masks[1] & trigger.risingmask)
+ if (masks[1] & sigma->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
- if (masks[1] & trigger.fallingmask)
+ if (masks[1] & sigma->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
} else {
/* Only value/mask trigger. */
static int hw_start_acquisition(int device_index, gpointer session_device_id)
{
struct sigrok_device_instance *sdi;
+ struct sigma *sigma;
struct datafeed_packet packet;
struct datafeed_header header;
struct clockselect_50 clockselect;
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR;
- device_index = device_index;
+ sigma = sdi->priv;
/* If the samplerate has not been set, default to 50 MHz. */
- if (cur_firmware == -1)
+ if (sigma->cur_firmware == -1)
set_samplerate(sdi, MHZ(50));
/* Enter trigger programming mode. */
- sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20);
+ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, sigma);
/* 100 and 200 MHz mode. */
- if (cur_samplerate >= MHZ(100)) {
- sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81);
+ if (sigma->cur_samplerate >= MHZ(100)) {
+ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, sigma);
/* Find which pin to trigger on from mask. */
for (triggerpin = 0; triggerpin < 8; ++triggerpin)
- if ((trigger.risingmask | trigger.fallingmask) &
+ if ((sigma->trigger.risingmask | sigma->trigger.fallingmask) &
(1 << triggerpin))
break;
triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
/* Default rising edge. */
- if (trigger.fallingmask)
+ if (sigma->trigger.fallingmask)
triggerselect |= 1 << 3;
/* All other modes. */
- } else if (cur_samplerate <= MHZ(50)) {
- build_basic_trigger(&lut);
+ } else if (sigma->cur_samplerate <= MHZ(50)) {
+ build_basic_trigger(&lut, sigma);
- sigma_write_trigger_lut(&lut);
+ sigma_write_trigger_lut(&lut, sigma);
triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
}
sigma_write_register(WRITE_TRIGGER_OPTION,
(uint8_t *) &triggerinout_conf,
- sizeof(struct triggerinout));
+ sizeof(struct triggerinout), sigma);
/* Go back to normal mode. */
- sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect);
+ sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, sigma);
/* Set clock select register. */
- if (cur_samplerate == MHZ(200))
+ if (sigma->cur_samplerate == MHZ(200))
/* Enable 4 probes. */
- sigma_set_register(WRITE_CLOCK_SELECT, 0xf0);
- else if (cur_samplerate == MHZ(100))
+ sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, sigma);
+ else if (sigma->cur_samplerate == MHZ(100))
/* Enable 8 probes. */
- sigma_set_register(WRITE_CLOCK_SELECT, 0x00);
+ sigma_set_register(WRITE_CLOCK_SELECT, 0x00, sigma);
else {
/*
* 50 MHz mode (or fraction thereof). Any fraction down to
* 50 MHz / 256 can be used, but is not supported by sigrok API.
*/
- frac = MHZ(50) / cur_samplerate - 1;
+ frac = MHZ(50) / sigma->cur_samplerate - 1;
clockselect.async = 0;
clockselect.fraction = frac;
sigma_write_register(WRITE_CLOCK_SELECT,
(uint8_t *) &clockselect,
- sizeof(clockselect));
+ sizeof(clockselect), sigma);
}
/* Setup maximum post trigger time. */
- sigma_set_register(WRITE_POST_TRIGGER, (capture_ratio * 255) / 100);
+ sigma_set_register(WRITE_POST_TRIGGER,
+ (sigma->capture_ratio * 255) / 100, sigma);
/* Start acqusition. */
- gettimeofday(&start_tv, 0);
- sigma_set_register(WRITE_MODE, 0x0d);
+ gettimeofday(&sigma->start_tv, 0);
+ sigma_set_register(WRITE_MODE, 0x0d, sigma);
+
+ sigma->session_id = session_device_id;
/* Send header packet to the session bus. */
packet.type = DF_HEADER;
packet.payload = &header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
- header.samplerate = cur_samplerate;
+ header.samplerate = sigma->cur_samplerate;
header.protocol_id = PROTO_RAW;
- header.num_logic_probes = num_probes;
+ header.num_logic_probes = sigma->num_probes;
header.num_analog_probes = 0;
session_bus(session_device_id, &packet);
/* Add capture source. */
- source_add(0, G_IO_IN, 10, receive_data, session_device_id);
+ source_add(0, G_IO_IN, 10, receive_data, sdi);
- sigma.state = SIGMA_CAPTURE;
+ sigma->state.state = SIGMA_CAPTURE;
return SIGROK_OK;
}
static void hw_stop_acquisition(int device_index, gpointer session_device_id)
{
+ struct sigrok_device_instance *sdi;
+ struct sigma *sigma;
uint8_t modestatus;
- device_index = device_index;
+ if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
+ return;
+
+ sigma = sdi->priv;
+
session_device_id = session_device_id;
/* Stop acquisition. */
- sigma_set_register(WRITE_MODE, 0x11);
+ sigma_set_register(WRITE_MODE, 0x11, sigma);
/* Set SDRAM Read Enable. */
- sigma_set_register(WRITE_MODE, 0x02);
+ sigma_set_register(WRITE_MODE, 0x02, sigma);
/* Get the current position. */
- sigma_read_pos(&sigma.stoppos, &sigma.triggerpos);
+ sigma_read_pos(&sigma->state.stoppos, &sigma->state.triggerpos, sigma);
/* Check if trigger has fired. */
- modestatus = sigma_get_register(READ_MODE);
+ modestatus = sigma_get_register(READ_MODE, sigma);
if (modestatus & 0x20) {
- sigma.triggerchunk = sigma.triggerpos / 512;
+ sigma->state.triggerchunk = sigma->state.triggerpos / 512;
} else
- sigma.triggerchunk = -1;
+ sigma->state.triggerchunk = -1;
- sigma.chunks_downloaded = 0;
+ sigma->state.chunks_downloaded = 0;
- sigma.state = SIGMA_DOWNLOAD;
+ sigma->state.state = SIGMA_DOWNLOAD;
}
struct device_plugin asix_sigma_plugin_info = {