--- /dev/null
+##
+## This file is part of the libsigrokdecode project.
+##
+## Copyright (C) 2017 Gerhard Sittig <gerhard.sittig@gmx.net>
+##
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2 of the License, or
+## (at your option) any later version.
+##
+## This program is distributed in the hope that it will be useful,
+## but WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+## GNU General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with this program; if not, see <http://www.gnu.org/licenses/>.
+##
+
+# This implementation is incomplete. TODO items:
+# - Support the optional RESET# pin, detect cold and warm reset.
+# - Split slot values into audio samples of their respective width and
+# frequency (either on user provided parameters, or from inspection of
+# decoded register access).
+
+import sigrokdecode as srd
+
+class ChannelError(Exception):
+ pass
+
+class Pins:
+ (SYNC, BIT_CLK, SDATA_OUT, SDATA_IN, RESET) = range(5)
+
+class Ann:
+ (
+ BITS_OUT, BITS_IN,
+ SLOT_OUT_RAW, SLOT_OUT_TAG, SLOT_OUT_ADDR, SLOT_OUT_DATA,
+ SLOT_OUT_03, SLOT_OUT_04, SLOT_OUT_05, SLOT_OUT_06,
+ SLOT_OUT_07, SLOT_OUT_08, SLOT_OUT_09, SLOT_OUT_10,
+ SLOT_OUT_11, SLOT_OUT_IO,
+ SLOT_IN_RAW, SLOT_IN_TAG, SLOT_IN_ADDR, SLOT_IN_DATA,
+ SLOT_IN_03, SLOT_IN_04, SLOT_IN_05, SLOT_IN_06,
+ SLOT_IN_07, SLOT_IN_08, SLOT_IN_09, SLOT_IN_10,
+ SLOT_IN_11, SLOT_IN_IO,
+ WARN, ERROR,
+ ) = range(32)
+ (
+ BIN_FRAME_OUT,
+ BIN_FRAME_IN,
+ BIN_SLOT_RAW_OUT,
+ BIN_SLOT_RAW_IN,
+ ) = range(4)
+
+class Decoder(srd.Decoder):
+ api_version = 3
+ id = 'ac97'
+ name = "AC '97"
+ longname = "Audio Codec '97"
+ desc = 'Audio and modem control for PC systems.'
+ license = 'gplv2+'
+ inputs = ['logic']
+ outputs = ['ac97']
+ channels = (
+ {'id': 'sync', 'name': 'SYNC', 'desc': 'Frame synchronization'},
+ {'id': 'clk', 'name': 'BIT_CLK', 'desc': 'Data bits clock'},
+ )
+ optional_channels = (
+ {'id': 'out', 'name': 'SDATA_OUT', 'desc': 'Data output'},
+ {'id': 'in', 'name': 'SDATA_IN', 'desc': 'Data input'},
+ {'id': 'rst', 'name': 'RESET#', 'desc': 'Reset line'},
+ )
+ annotations = (
+ ('bit-out', 'Output bits'),
+ ('bit-in', 'Input bits'),
+ ('slot-out-raw', 'Output raw value'),
+ ('slot-out-tag', 'Output TAG'),
+ ('slot-out-cmd-addr', 'Output command address'),
+ ('slot-out-cmd-data', 'Output command data'),
+ ('slot-out-03', 'Output slot 3'),
+ ('slot-out-04', 'Output slot 4'),
+ ('slot-out-05', 'Output slot 5'),
+ ('slot-out-06', 'Output slot 6'),
+ ('slot-out-07', 'Output slot 7'),
+ ('slot-out-08', 'Output slot 8'),
+ ('slot-out-09', 'Output slot 9'),
+ ('slot-out-10', 'Output slot 10'),
+ ('slot-out-11', 'Output slot 11'),
+ ('slot-out-io-ctrl', 'Output I/O control'),
+ ('slot-in-raw', 'Input raw value'),
+ ('slot-in-tag', 'Input TAG'),
+ ('slot-in-sts-addr', 'Input status address'),
+ ('slot-in-sts-data', 'Input status data'),
+ ('slot-in-03', 'Input slot 3'),
+ ('slot-in-04', 'Input slot 4'),
+ ('slot-in-05', 'Input slot 5'),
+ ('slot-in-06', 'Input slot 6'),
+ ('slot-in-07', 'Input slot 7'),
+ ('slot-in-08', 'Input slot 8'),
+ ('slot-in-09', 'Input slot 9'),
+ ('slot-in-10', 'Input slot 10'),
+ ('slot-in-11', 'Input slot 11'),
+ ('slot-in-io-sts', 'Input I/O status'),
+ # TODO: Add more annotation classes:
+ # TAG: 'ready', 'valid', 'id', 'rsv'
+ # CMD ADDR: 'r/w', 'addr', 'unused'
+ # CMD DATA: 'data', 'unused'
+ # 3-11: 'data', 'unused', 'double data'
+ ('warning', 'Warning'),
+ ('error', 'Error'),
+ )
+ annotation_rows = (
+ ('bits-out', 'Output bits', (Ann.BITS_OUT,)),
+ ('slots-out-raw', 'Output numbers', (Ann.SLOT_OUT_RAW,)),
+ ('slots-out', 'Output slots', (
+ Ann.SLOT_OUT_TAG, Ann.SLOT_OUT_ADDR, Ann.SLOT_OUT_DATA,
+ Ann.SLOT_OUT_03, Ann.SLOT_OUT_04, Ann.SLOT_OUT_05, Ann.SLOT_OUT_06,
+ Ann.SLOT_OUT_07, Ann.SLOT_OUT_08, Ann.SLOT_OUT_09, Ann.SLOT_OUT_10,
+ Ann.SLOT_OUT_11, Ann.SLOT_OUT_IO,)),
+ ('bits-in', 'Input bits', (Ann.BITS_IN,)),
+ ('slots-in-raw', 'Input numbers', (Ann.SLOT_IN_RAW,)),
+ ('slots-in', 'Input slots', (
+ Ann.SLOT_IN_TAG, Ann.SLOT_IN_ADDR, Ann.SLOT_IN_DATA,
+ Ann.SLOT_IN_03, Ann.SLOT_IN_04, Ann.SLOT_IN_05, Ann.SLOT_IN_06,
+ Ann.SLOT_IN_07, Ann.SLOT_IN_08, Ann.SLOT_IN_09, Ann.SLOT_IN_10,
+ Ann.SLOT_IN_11, Ann.SLOT_IN_IO,)),
+ ('warnings', 'Warnings', (Ann.WARN,)),
+ ('errors', 'Errors', (Ann.ERROR,)),
+ )
+ binary = (
+ ('frame-out', 'Frame bits, output data'),
+ ('frame-in', 'Frame bits, input data'),
+ ('slot-raw-out', 'Raw slot bits, output data'),
+ ('slot-raw-in', 'Raw slot bits, input data'),
+ # TODO: Which (other) binary classes to implement?
+ # - Are binary annotations per audio slot useful?
+ # - Assume 20bit per slot, in 24bit units? Or assume 16bit
+ # audio samples? Observe register access and derive width
+ # of the audio data? Dump channels 3-11 or 1-12?
+ )
+
+ def putx(self, ss, es, cls, data):
+ self.put(ss, es, self.out_ann, [cls, data])
+
+ def putf(self, frombit, bitcount, cls, data):
+ ss = self.frame_ss_list[frombit]
+ es = self.frame_ss_list[frombit + bitcount]
+ self.putx(ss, es, cls, data)
+
+ def putb(self, frombit, bitcount, cls, data):
+ ss = self.frame_ss_list[frombit]
+ es = self.frame_ss_list[frombit + bitcount]
+ self.put(ss, es, self.out_binary, [cls, data])
+
+ def __init__(self):
+ self.out_binary = None
+ self.out_ann = None
+ self.reset()
+
+ def reset(self):
+ self.frame_ss_list = None
+ self.frame_slot_lens = [0, 16] + [16 + 20 * i for i in range(1, 13)]
+ self.frame_total_bits = self.frame_slot_lens[-1]
+ self.handle_slots = {
+ 0: self.handle_slot_00,
+ 1: self.handle_slot_01,
+ 2: self.handle_slot_02,
+ }
+
+ def start(self):
+ if not self.out_binary:
+ self.out_binary = self.register(srd.OUTPUT_BINARY)
+ if not self.out_ann:
+ self.out_ann = self.register(srd.OUTPUT_ANN)
+
+ def metadata(self, key, value):
+ if key == srd.SRD_CONF_SAMPLERATE:
+ self.samplerate = value
+
+ def bits_to_int(self, bits):
+ # Convert MSB-first bit sequence to integer value.
+ if not bits:
+ return 0
+ count = len(bits)
+ value = sum([2 ** (count - 1 - i) for i in range(count) if bits[i]])
+ return value
+
+ def bits_to_bin_ann(self, bits):
+ # Convert MSB-first bit sequence to binary annotation data.
+ # It's assumed that the number of bits does not (in useful ways)
+ # fit into an integer, and we need to create an array of bytes
+ # from the data afterwards, anyway. Hence the separate routine
+ # and the conversion of eight bits each.
+ out = []
+ count = len(bits)
+ while count > 0:
+ count -= 8
+ by, bits = bits[:8], bits[8:]
+ by = self.bits_to_int(by)
+ out.append(by)
+ out = bytes(out)
+ return out
+
+ def int_to_nibble_text(self, value, bitcount):
+ # Convert number to hex digits for given bit count.
+ digits = (bitcount + 3) // 4
+ text = '{{:0{:d}x}}'.format(digits).format(value)
+ return text
+
+ def get_bit_field(self, data, size, off, count):
+ shift = size - off - count
+ data >>= shift
+ mask = (1 << count) - 1
+ data &= mask
+ return data
+
+ def flush_frame_bits(self):
+ # Flush raw frame bits to binary annotation.
+ anncls = Ann.BIN_FRAME_OUT
+ data = self.frame_bits_out[:]
+ count = len(data)
+ data = self.bits_to_bin_ann(data)
+ self.putb(0, count, anncls, data)
+
+ anncls = Ann.BIN_FRAME_IN
+ data = self.frame_bits_in[:]
+ count = len(data)
+ data = self.bits_to_bin_ann(data)
+ self.putb(0, count, anncls, data)
+
+ def start_frame(self, ss):
+ # Mark the start of a frame.
+ if self.frame_ss_list:
+ # Flush bits if we had a frame before the frame which is
+ # starting here.
+ self.flush_frame_bits()
+ self.frame_ss_list = [ss]
+ self.frame_bits_out = []
+ self.frame_bits_in = []
+ self.frame_slot_data_out = []
+ self.frame_slot_data_in = []
+ self.have_slots = {True: None, False: None}
+
+ def handle_slot_dummy(self, slotidx, bitidx, bitcount, is_out, data):
+ # Handle slot x, default/fallback handler.
+ # Only process data of slots 1-12 when slot 0 says "valid".
+ if not self.have_slots[is_out]:
+ return
+ if not self.have_slots[is_out][slotidx]:
+ return
+
+ # Emit a naive annotation with just the data bits that we saw
+ # for the slot (hex nibbles for density). For audio data this
+ # can be good enough. Slots with special meaning should not end
+ # up calling the dummy handler.
+ text = self.int_to_nibble_text(data, bitcount)
+ anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
+ self.putf(bitidx, bitcount, anncls + slotidx, [text])
+
+ # Emit binary output for the data that is contained in slots
+ # which end up calling the default handler. This transparently
+ # should translate to "the slots with audio data", as other
+ # slots which contain management data should have their specific
+ # handler routines. In the present form, this approach might be
+ # good enough to get a (header-less) audio stream for typical
+ # setups where only line-in or line-out are in use.
+ #
+ # TODO: Improve this early prototype implementation. For now the
+ # decoder just exports the upper 16 bits of each audio channel
+ # that happens to be valid. For an improved implementation, it
+ # either takes user provided specs or more smarts like observing
+ # register access (if the capture includes it).
+ anncls = Ann.BIN_SLOT_RAW_OUT if is_out else Ann.BIN_SLOT_RAW_IN
+ data_bin = data >> 4
+ data_bin &= 0xffff
+ data_bin = data_bin.to_bytes(2, byteorder = 'big')
+ self.putb(bitidx, bitcount, anncls, data_bin)
+
+ def handle_slot_00(self, slotidx, bitidx, bitcount, is_out, data):
+ # Handle slot 0, TAG.
+ slotpos = self.frame_slot_lens[slotidx]
+ fieldoff = 0
+ anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
+
+ fieldlen = 1
+ ready = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ text = ['READY: 1', 'READY', 'RDY', 'R'] if ready else ['ready: 0', 'rdy', '-']
+ self.putf(slotpos + fieldoff, fieldlen, anncls, text)
+ fieldoff += fieldlen
+
+ fieldlen = 12
+ valid = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ text = ['VALID: {:3x}'.format(valid), '{:3x}'.format(valid)]
+ self.putf(slotpos + fieldoff, fieldlen, anncls, text)
+ have_slots = [True] + [False] * 12
+ for idx in range(12):
+ have_slots[idx + 1] = bool(valid & (1 << (11 - idx)))
+ self.have_slots[is_out] = have_slots
+ fieldoff += fieldlen
+
+ fieldlen = 1
+ rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ if rsv != 0:
+ text = ['reserved bit error', 'rsv error', 'rsv']
+ self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
+ fieldoff += fieldlen
+
+ # TODO: Will input slot 0 have a Codec ID, or 3 reserved bits?
+ fieldlen = 2
+ codec = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ text = ['CODEC: {:1x}'.format(codec), '{:1x}'.format(codec)]
+ self.putf(slotpos + fieldoff, fieldlen, anncls, text)
+ fieldoff += fieldlen
+
+ def handle_slot_01(self, slotidx, bitidx, bitcount, is_out, data):
+ # Handle slot 1, command/status address.
+ slotpos = self.frame_slot_lens[slotidx]
+ if not self.have_slots[is_out]:
+ return
+ if not self.have_slots[is_out][slotidx]:
+ return
+ fieldoff = 0
+ anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
+ anncls += slotidx
+
+ fieldlen = 1
+ if is_out:
+ is_read = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ text = ['READ', 'RD', 'R'] if is_read else ['WRITE', 'WR', 'W']
+ self.putf(slotpos + fieldoff, fieldlen, anncls, text)
+ # TODO: Check for the "atomic" constraint? Some operations
+ # involve address _and_ data, which cannot be spread across
+ # several frames. Slot 0 and 1 _must_ be provided within the
+ # same frame (the test should occur in the handler for slot
+ # 2 of course, in slot 1 we don't know what will follow).
+ else:
+ rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ if rsv != 0:
+ text = ['reserved bit error', 'rsv error', 'rsv']
+ self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
+ fieldoff += fieldlen
+
+ fieldlen = 7
+ regaddr = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ # TODO: Present 0-63 or 0-126 as the address of the 16bit register?
+ text = ['ADDR: {:2x}'.format(regaddr), '{:2x}'.format(regaddr)]
+ self.putf(slotpos + fieldoff, fieldlen, anncls, text)
+ if regaddr & 0x01:
+ text = ['odd register address', 'odd reg addr', 'odd addr', 'odd']
+ self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
+ fieldoff += fieldlen
+
+ # Strictly speaking there are 10 data request bits and 2 reserved
+ # bits for input slots, and 12 reserved bits for output slots. We
+ # test for 10 and 2 bits, to simplify the logic. Only in case of
+ # non-zero reserved bits for outputs this will result in "a little
+ # strange" an annotation. This is a cosmetic issue, we don't mind.
+ fieldlen = 10
+ reqdata = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ if is_out and reqdata != 0:
+ text = ['reserved bit error', 'rsv error', 'rsv']
+ self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
+ if not is_out:
+ text = ['REQ: {:3x}'.format(reqdata), '{:3x}'.format(reqdata)]
+ self.putf(slotpos + fieldoff, fieldlen, anncls, text)
+ fieldoff += fieldlen
+
+ fieldlen = 2
+ rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ if rsv != 0:
+ text = ['reserved bit error', 'rsv error', 'rsv']
+ self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
+ fieldoff += fieldlen
+
+ def handle_slot_02(self, slotidx, bitidx, bitcount, is_out, data):
+ # Handle slot 2, command/status data.
+ slotpos = self.frame_slot_lens[slotidx]
+ if not self.have_slots[is_out]:
+ return
+ if not self.have_slots[is_out][slotidx]:
+ return
+ fieldoff = 0
+ anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
+ anncls += slotidx
+
+ fieldlen = 16
+ rwdata = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ # TODO: Check for zero output data when the operation is a read.
+ # TODO: Check for the "atomic" constraint.
+ text = ['DATA: {:4x}'.format(rwdata), '{:4x}'.format(rwdata)]
+ self.putf(slotpos + fieldoff, fieldlen, anncls, text)
+ fieldoff += fieldlen
+
+ fieldlen = 4
+ rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
+ if rsv != 0:
+ text = ['reserved bits error', 'rsv error', 'rsv']
+ self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
+ fieldoff += fieldlen
+
+ # TODO: Implement other slots.
+ # - 1: cmd/status addr (check status vs command)
+ # - 2: cmd/status data (check status vs command)
+ # - 3-11: audio out/in
+ # - 12: io control/status (modem GPIO(?))
+
+ def handle_slot(self, slotidx, data_out, data_in):
+ # Process a received slot of a frame.
+ func = self.handle_slots.get(slotidx, self.handle_slot_dummy)
+ bitidx = self.frame_slot_lens[slotidx]
+ bitcount = self.frame_slot_lens[slotidx + 1] - bitidx
+ if data_out is not None:
+ func(slotidx, bitidx, bitcount, True, data_out)
+ if data_in is not None:
+ func(slotidx, bitidx, bitcount, False, data_in)
+
+ def handle_bits(self, ss, es, bit_out, bit_in):
+ # Process a received pair of bits.
+ # Emit the bits' annotations. Only interpret the data when we
+ # are in a frame (have seen the start of the frame, and don't
+ # exceed the expected number of bits in a frame).
+ if bit_out is not None:
+ self.putx(ss, es, Ann.BITS_OUT, ['{:d}'.format(bit_out)])
+ if bit_in is not None:
+ self.putx(ss, es, Ann.BITS_IN, ['{:d}'.format(bit_in)])
+ if self.frame_ss_list is None:
+ return
+ self.frame_ss_list.append(es)
+ have_len = len(self.frame_ss_list) - 1
+ if have_len > self.frame_total_bits:
+ return
+
+ # Accumulate the bits within the frame, until one slot of the
+ # frame has become available.
+ slot_idx = 0
+ if bit_out is not None:
+ self.frame_bits_out.append(bit_out)
+ slot_idx = len(self.frame_slot_data_out)
+ if bit_in is not None:
+ self.frame_bits_in.append(bit_in)
+ slot_idx = len(self.frame_slot_data_in)
+ want_len = self.frame_slot_lens[slot_idx + 1]
+ if have_len != want_len:
+ return
+ prev_len = self.frame_slot_lens[slot_idx]
+
+ # Convert bits to integer values. This shall simplify extraction
+ # of bit fields in multiple other locations.
+ slot_data_out = None
+ if bit_out is not None:
+ slot_bits = self.frame_bits_out[prev_len:]
+ slot_data = self.bits_to_int(slot_bits)
+ self.frame_slot_data_out.append(slot_data)
+ slot_data_out = slot_data
+ slot_data_in = None
+ if bit_in is not None:
+ slot_bits = self.frame_bits_in[prev_len:]
+ slot_data = self.bits_to_int(slot_bits)
+ self.frame_slot_data_in.append(slot_data)
+ slot_data_in = slot_data
+
+ # Emit simple annotations for the integer values, until upper
+ # layer decode stages will be implemented.
+ slot_len = have_len - prev_len
+ slot_ss = self.frame_ss_list[prev_len]
+ slot_es = self.frame_ss_list[have_len]
+ if slot_data_out is not None:
+ slot_text = self.int_to_nibble_text(slot_data_out, slot_len)
+ self.putx(slot_ss, slot_es, Ann.SLOT_OUT_RAW, [slot_text])
+ if slot_data_in is not None:
+ slot_text = self.int_to_nibble_text(slot_data_in, slot_len)
+ self.putx(slot_ss, slot_es, Ann.SLOT_IN_RAW, [slot_text])
+
+ self.handle_slot(slot_idx, slot_data_out, slot_data_in)
+
+ def decode(self):
+ have_sdo = self.has_channel(Pins.SDATA_OUT)
+ have_sdi = self.has_channel(Pins.SDATA_IN)
+ if not have_sdo and not have_sdi:
+ raise ChannelError('Either SDATA_OUT or SDATA_IN (or both) are required.')
+ have_reset = self.has_channel(Pins.RESET)
+
+ # Data is sampled at falling CLK edges. Annotations need to span
+ # the period between rising edges. SYNC rises one cycle _before_
+ # the start of a frame. Grab the earliest SYNC sample we can get
+ # and advance to the start of a bit time. Then keep getting the
+ # samples and the end of all subsequent bit times.
+ prev_sync = [None, None, None]
+ pins = self.wait({Pins.BIT_CLK: 'e'})
+ if pins[Pins.BIT_CLK] == 0:
+ prev_sync[-1] = pins[Pins.SYNC]
+ pins = self.wait({Pins.BIT_CLK: 'r'})
+ bit_ss = self.samplenum
+ while True:
+ pins = self.wait({Pins.BIT_CLK: 'f'})
+ prev_sync.pop(0)
+ prev_sync.append(pins[Pins.SYNC])
+ self.wait({Pins.BIT_CLK: 'r'})
+ if prev_sync[0] == 0 and prev_sync[1] == 1:
+ self.start_frame(bit_ss)
+ self.handle_bits(bit_ss, self.samplenum,
+ pins[Pins.SDATA_OUT] if have_sdo else None,
+ pins[Pins.SDATA_IN] if have_sdi else None)
+ bit_ss = self.samplenum