--- /dev/null
+/*
+ * This file is part of the libsigrok project.
+ *
+ * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <stdint.h>
+#include <string.h>
+#include <math.h>
+#include <glib.h>
+#include "libsigrok.h"
+#include "libsigrok-internal.h"
+
+#define LOG_PREFIX "es51919"
+
+struct dev_buffer {
+ /** Total size of the buffer. */
+ size_t size;
+ /** Amount of data currently in the buffer. */
+ size_t len;
+ /** Offset where the data starts in the buffer. */
+ size_t offset;
+ /** Space for the data. */
+ uint8_t data[];
+};
+
+static struct dev_buffer *dev_buffer_new(size_t size)
+{
+ struct dev_buffer *dbuf;
+
+ if (!(dbuf = g_try_malloc(sizeof(struct dev_buffer) + size))) {
+ sr_err("Dev buffer malloc failed (size=%zu).", size);
+ return NULL;
+ }
+
+ dbuf->size = size;
+ dbuf->len = 0;
+ dbuf->offset = 0;
+
+ return dbuf;
+}
+
+static void dev_buffer_destroy(struct dev_buffer *dbuf)
+{
+ g_free(dbuf);
+}
+
+static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
+ struct sr_dev_inst *sdi)
+{
+ struct sr_serial_dev_inst *serial;
+ int len;
+
+ serial = sdi->conn;
+
+ /* If we already have data, move it to the beginning of the buffer. */
+ if (dbuf->len > 0 && dbuf->offset > 0)
+ memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
+
+ dbuf->offset = 0;
+
+ len = dbuf->size - dbuf->len;
+ len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
+ if (len < 0) {
+ sr_err("Serial port read error: %d.", len);
+ return len;
+ }
+
+ dbuf->len += len;
+
+ return SR_OK;
+}
+
+static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
+ gboolean (*packet_valid)(const uint8_t *),
+ size_t packet_size)
+{
+ size_t offset;
+
+ while (dbuf->len >= packet_size) {
+ if (packet_valid(dbuf->data + dbuf->offset)) {
+ offset = dbuf->offset;
+ dbuf->offset += packet_size;
+ dbuf->len -= packet_size;
+ return dbuf->data + offset;
+ }
+ dbuf->offset++;
+ dbuf->len--;
+ }
+
+ return NULL;
+}
+
+struct dev_sample_counter {
+ /** The current number of already received samples. */
+ uint64_t count;
+ /** The current sampling limit (in number of samples). */
+ uint64_t limit;
+};
+
+static void dev_sample_counter_start(struct dev_sample_counter *cnt)
+{
+ cnt->count = 0;
+}
+
+static void dev_sample_counter_inc(struct dev_sample_counter *cnt)
+{
+ cnt->count++;
+}
+
+static void dev_sample_limit_set(struct dev_sample_counter *cnt, uint64_t limit)
+{
+ cnt->limit = limit;
+}
+
+static gboolean dev_sample_limit_reached(struct dev_sample_counter *cnt)
+{
+ if (cnt->limit && cnt->count >= cnt->limit) {
+ sr_info("Requested sample limit reached.");
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+struct dev_time_counter {
+ /** The starting time of current sampling run. */
+ int64_t starttime;
+ /** The time limit (in milliseconds). */
+ uint64_t limit;
+};
+
+static void dev_time_counter_start(struct dev_time_counter *cnt)
+{
+ cnt->starttime = g_get_monotonic_time();
+}
+
+static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
+{
+ cnt->limit = limit;
+}
+
+static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
+{
+ int64_t time;
+
+ if (cnt->limit) {
+ time = (g_get_monotonic_time() - cnt->starttime) / 1000;
+ if (time > (int64_t)cnt->limit) {
+ sr_info("Requested time limit reached.");
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+}
+
+static void serial_conf_get(GSList *options, const char *def_serialcomm,
+ const char **conn, const char **serialcomm)
+{
+ struct sr_config *src;
+ GSList *l;
+
+ *conn = *serialcomm = NULL;
+ for (l = options; l; l = l->next) {
+ src = l->data;
+ switch (src->key) {
+ case SR_CONF_CONN:
+ *conn = g_variant_get_string(src->data, NULL);
+ break;
+ case SR_CONF_SERIALCOMM:
+ *serialcomm = g_variant_get_string(src->data, NULL);
+ break;
+ }
+ }
+
+ if (*serialcomm == NULL)
+ *serialcomm = def_serialcomm;
+}
+
+static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
+ const char *def_serialcomm)
+
+{
+ const char *conn, *serialcomm;
+
+ serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
+
+ if (!conn)
+ return NULL;
+
+ return sr_serial_dev_inst_new(conn, serialcomm);
+}
+
+static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
+ uint8_t *buf, size_t buflen,
+ size_t packet_size,
+ packet_valid_callback is_valid,
+ uint64_t timeout_ms, int baudrate)
+{
+ size_t len, dropped;
+ int ret;
+
+ if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
+ return ret;
+
+ serial_flush(serial);
+
+ len = buflen;
+ ret = serial_stream_detect(serial, buf, &len, packet_size,
+ is_valid, timeout_ms, baudrate);
+
+ serial_close(serial);
+
+ if (ret != SR_OK)
+ return ret;
+
+ /*
+ * If we dropped more than two packets worth of data, something is
+ * wrong. We shouldn't quit however, since the dropped bytes might be
+ * just zeroes at the beginning of the stream. Those can occur as a
+ * combination of the nonstandard cable that ships with some devices
+ * and the serial port or USB to serial adapter.
+ */
+ dropped = len - packet_size;
+ if (dropped > 2 * packet_size)
+ sr_warn("Had to drop too much data.");
+
+ return SR_OK;
+}
+
+static int serial_stream_check(struct sr_serial_dev_inst *serial,
+ size_t packet_size,
+ packet_valid_callback is_valid,
+ uint64_t timeout_ms, int baudrate)
+{
+ uint8_t buf[128];
+
+ return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
+ is_valid, timeout_ms, baudrate);
+}
+
+struct std_opt_desc {
+ const uint32_t *scanopts;
+ const int num_scanopts;
+ const uint32_t *devopts;
+ const int num_devopts;
+};
+
+static int std_config_list(uint32_t key, GVariant **data,
+ const struct std_opt_desc *d)
+{
+ switch (key) {
+ case SR_CONF_SCAN_OPTIONS:
+ *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
+ d->scanopts, d->num_scanopts, sizeof(uint32_t));
+ break;
+ case SR_CONF_DEVICE_OPTIONS:
+ *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
+ d->devopts, d->num_devopts, sizeof(uint32_t));
+ break;
+ default:
+ return SR_ERR_NA;
+ }
+
+ return SR_OK;
+}
+
+static int send_config_update(struct sr_dev_inst *sdi, struct sr_config *cfg)
+{
+ struct sr_datafeed_packet packet;
+ struct sr_datafeed_meta meta;
+
+ memset(&meta, 0, sizeof(meta));
+
+ packet.type = SR_DF_META;
+ packet.payload = &meta;
+
+ meta.config = g_slist_append(meta.config, cfg);
+
+ return sr_session_send(sdi, &packet);
+}
+
+/*
+ * Cyrustek ES51919 LCR chipset host protocol.
+ *
+ * Public official documentation does not contain the protocol
+ * description, so this is all based on reverse engineering.
+ *
+ * Packet structure (17 bytes):
+ *
+ * 0x00: header1 ?? (0x00)
+ * 0x01: header2 ?? (0x0d)
+ *
+ * 0x02: flags
+ * bit 0 = hold enabled
+ * bit 1 = reference shown (in delta mode)
+ * bit 2 = delta mode
+ * bit 3 = calibration mode
+ * bit 4 = sorting mode
+ * bit 5 = LCR mode
+ * bit 6 = auto mode
+ * bit 7 = parallel measurement (vs. serial)
+ *
+ * 0x03: config
+ * bit 0-4 = ??? (0x10)
+ * bit 5-7 = test frequency
+ * 0 = 100 Hz
+ * 1 = 120 Hz
+ * 2 = 1 kHz
+ * 3 = 10 kHz
+ * 4 = 100 kHz
+ * 5 = 0 Hz (DC)
+ *
+ * 0x04: tolerance (sorting mode)
+ * 0 = not set
+ * 3 = +-0.25%
+ * 4 = +-0.5%
+ * 5 = +-1%
+ * 6 = +-2%
+ * 7 = +-5%
+ * 8 = +-10%
+ * 9 = +-20%
+ * 10 = -20+80%
+ *
+ * 0x05-0x09: primary measurement
+ * 0x05: measured quantity
+ * 1 = inductance
+ * 2 = capacitance
+ * 3 = resistance
+ * 4 = DC resistance
+ * 0x06: measurement MSB (0x4e20 = 20000 = outside limits)
+ * 0x07: measurement LSB
+ * 0x08: measurement info
+ * bit 0-2 = decimal point multiplier (10^-val)
+ * bit 3-7 = unit
+ * 0 = no unit
+ * 1 = Ohm
+ * 2 = kOhm
+ * 3 = MOhm
+ * 5 = uH
+ * 6 = mH
+ * 7 = H
+ * 8 = kH
+ * 9 = pF
+ * 10 = nF
+ * 11 = uF
+ * 12 = mF
+ * 13 = %
+ * 14 = degree
+ * 0x09: measurement status
+ * bit 0-3 = status
+ * 0 = normal (measurement shown)
+ * 1 = blank (nothing shown)
+ * 2 = lines ("----")
+ * 3 = ouside limits ("OL")
+ * 7 = pass ("PASS")
+ * 8 = fail ("FAIL")
+ * 9 = open ("OPEn")
+ * 10 = shorted ("Srt")
+ * bit 4-6 = ??? (maybe part of same field with 0-3)
+ * bit 7 = ??? (some independent flag)
+ *
+ * 0x0a-0x0e: secondary measurement
+ * 0x0a: measured quantity
+ * 0 = none
+ * 1 = dissipation factor
+ * 2 = quality factor
+ * 3 = parallel AC resistance / ESR
+ * 4 = phase angle
+ * 0x0b-0x0e: like primary measurement
+ *
+ * 0x0f: footer1 (0x0d) ?
+ * 0x10: footer2 (0x0a) ?
+ */
+
+#define PACKET_SIZE 17
+
+static const uint64_t frequencies[] = {
+ 100, 120, 1000, 10000, 100000, 0,
+};
+
+/** Private, per-device-instance driver context. */
+struct dev_context {
+ /** Opaque pointer passed in by the frontend. */
+ void *cb_data;
+
+ /** The number of samples. */
+ struct dev_sample_counter sample_count;
+
+ /** The time limit counter. */
+ struct dev_time_counter time_count;
+
+ /** Data buffer. */
+ struct dev_buffer *buf;
+
+ /** The frequency of the test signal (index to frequencies[]). */
+ unsigned int freq;
+};
+
+static int parse_mq(const uint8_t *buf, int is_secondary, int is_parallel)
+{
+ switch (is_secondary << 8 | buf[0]) {
+ case 0x001:
+ return is_parallel ?
+ SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIAL_INDUCTANCE;
+ case 0x002:
+ return is_parallel ?
+ SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIAL_CAPACITANCE;
+ case 0x003:
+ case 0x103:
+ return is_parallel ?
+ SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIAL_RESISTANCE;
+ case 0x004:
+ return SR_MQ_RESISTANCE;
+ case 0x100:
+ return SR_MQ_DIFFERENCE;
+ case 0x101:
+ return SR_MQ_DISSIPATION_FACTOR;
+ case 0x102:
+ return SR_MQ_QUALITY_FACTOR;
+ case 0x104:
+ return SR_MQ_PHASE_ANGLE;
+ }
+
+ sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
+
+ return -1;
+}
+
+static float parse_value(const uint8_t *buf)
+{
+ static const float decimals[] = {
+ 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7
+ };
+ int16_t val;
+
+ val = (buf[1] << 8) | buf[2];
+ return (float)val * decimals[buf[3] & 7];
+}
+
+static void parse_measurement(const uint8_t *pkt, float *floatval,
+ struct sr_datafeed_analog *analog,
+ int is_secondary)
+{
+ static const struct {
+ int unit;
+ float mult;
+ } units[] = {
+ { SR_UNIT_UNITLESS, 1 }, /* no unit */
+ { SR_UNIT_OHM, 1 }, /* Ohm */
+ { SR_UNIT_OHM, 1e3 }, /* kOhm */
+ { SR_UNIT_OHM, 1e6 }, /* MOhm */
+ { -1, 0 }, /* ??? */
+ { SR_UNIT_HENRY, 1e-6 }, /* uH */
+ { SR_UNIT_HENRY, 1e-3 }, /* mH */
+ { SR_UNIT_HENRY, 1 }, /* H */
+ { SR_UNIT_HENRY, 1e3 }, /* kH */
+ { SR_UNIT_FARAD, 1e-12 }, /* pF */
+ { SR_UNIT_FARAD, 1e-9 }, /* nF */
+ { SR_UNIT_FARAD, 1e-6 }, /* uF */
+ { SR_UNIT_FARAD, 1e-3 }, /* mF */
+ { SR_UNIT_PERCENTAGE, 1 }, /* % */
+ { SR_UNIT_DEGREE, 1 } /* degree */
+ };
+ const uint8_t *buf;
+ int state;
+
+ buf = pkt + (is_secondary ? 10 : 5);
+
+ analog->mq = -1;
+ analog->mqflags = 0;
+
+ state = buf[4] & 0xf;
+
+ if (state != 0 && state != 3)
+ return;
+
+ if (pkt[2] & 0x18) {
+ /* Calibration and Sorting modes not supported. */
+ return;
+ }
+
+ if (!is_secondary) {
+ if (pkt[2] & 0x01)
+ analog->mqflags |= SR_MQFLAG_HOLD;
+ if (pkt[2] & 0x02)
+ analog->mqflags |= SR_MQFLAG_REFERENCE;
+ if (pkt[2] & 0x20)
+ analog->mqflags |= SR_MQFLAG_AUTOMQ;
+ if (pkt[2] & 0x40)
+ analog->mqflags |= SR_MQFLAG_AUTOMODEL;
+ } else {
+ if (pkt[2] & 0x04)
+ analog->mqflags |= SR_MQFLAG_RELATIVE;
+ }
+
+ if ((analog->mq = parse_mq(buf, is_secondary, pkt[2] & 0x80)) < 0)
+ return;
+
+ if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
+ sr_err("Unknown unit %u.", buf[3] >> 3);
+ analog->mq = -1;
+ return;
+ }
+
+ analog->unit = units[buf[3] >> 3].unit;
+
+ *floatval = parse_value(buf);
+ *floatval *= (state == 0) ? units[buf[3] >> 3].mult : INFINITY;
+}
+
+static unsigned int parse_frequency(const uint8_t *pkt)
+{
+ unsigned int freq;
+
+ freq = pkt[3] >> 5;
+
+ if (freq >= ARRAY_SIZE(frequencies)) {
+ sr_err("Unknown frequency %u.", freq);
+ freq = ARRAY_SIZE(frequencies) - 1;
+ }
+
+ return freq;
+}
+
+static gboolean packet_valid(const uint8_t *pkt)
+{
+ /*
+ * If the first two bytes of the packet are indeed a constant
+ * header, they should be checked too. Since we don't know it
+ * for sure, we'll just check the last two for now since they
+ * seem to be constant just like in the other Cyrustek chipset
+ * protocols.
+ */
+ if (pkt[15] == 0xd && pkt[16] == 0xa)
+ return TRUE;
+
+ return FALSE;
+}
+
+static int send_frequency_update(struct sr_dev_inst *sdi, unsigned int freq)
+{
+ struct sr_config *cfg;
+ struct dev_context *devc;
+ int ret;
+
+ devc = sdi->priv;
+
+ cfg = sr_config_new(SR_CONF_OUTPUT_FREQUENCY,
+ g_variant_new_uint64(frequencies[freq]));
+
+ if (!cfg)
+ return SR_ERR;
+
+ ret = send_config_update(devc->cb_data, cfg);
+ sr_config_free(cfg);
+
+ return ret;
+}
+
+static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
+{
+ struct sr_datafeed_packet packet;
+ struct sr_datafeed_analog analog;
+ struct dev_context *devc;
+ unsigned int freq;
+ float floatval;
+ int count;
+
+ devc = sdi->priv;
+
+ freq = parse_frequency(pkt);
+ if (freq != devc->freq) {
+ if (send_frequency_update(sdi, freq) == SR_OK)
+ devc->freq = freq;
+ else
+ return;
+ }
+
+ count = 0;
+
+ memset(&analog, 0, sizeof(analog));
+
+ analog.num_samples = 1;
+ analog.data = &floatval;
+
+ packet.type = SR_DF_ANALOG;
+ packet.payload = &analog;
+
+ analog.channels = g_slist_append(NULL, sdi->channels->data);
+
+ parse_measurement(pkt, &floatval, &analog, 0);
+ if (analog.mq >= 0) {
+ if (sr_session_send(devc->cb_data, &packet) == SR_OK)
+ count++;
+ }
+
+ analog.channels = g_slist_append(NULL, sdi->channels->next->data);
+
+ parse_measurement(pkt, &floatval, &analog, 1);
+ if (analog.mq >= 0) {
+ if (sr_session_send(devc->cb_data, &packet) == SR_OK)
+ count++;
+ }
+
+ if (count > 0)
+ dev_sample_counter_inc(&devc->sample_count);
+}
+
+static int handle_new_data(struct sr_dev_inst *sdi)
+{
+ struct dev_context *devc;
+ uint8_t *pkt;
+ int ret;
+
+ devc = sdi->priv;
+
+ ret = dev_buffer_fill_serial(devc->buf, sdi);
+ if (ret < 0)
+ return ret;
+
+ while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
+ PACKET_SIZE)))
+ handle_packet(sdi, pkt);
+
+ return SR_OK;
+}
+
+static int receive_data(int fd, int revents, void *cb_data)
+{
+ struct sr_dev_inst *sdi;
+ struct dev_context *devc;
+
+ (void)fd;
+
+ if (!(sdi = cb_data))
+ return TRUE;
+
+ if (!(devc = sdi->priv))
+ return TRUE;
+
+ if (revents == G_IO_IN) {
+ /* Serial data arrived. */
+ handle_new_data(sdi);
+ }
+
+ if (dev_sample_limit_reached(&devc->sample_count) ||
+ dev_time_limit_reached(&devc->time_count))
+ sdi->driver->dev_acquisition_stop(sdi, cb_data);
+
+ return TRUE;
+}
+
+static int add_channel(struct sr_dev_inst *sdi, const char *name)
+{
+ struct sr_channel *ch;
+
+ if (!(ch = sr_channel_new(0, SR_CHANNEL_ANALOG, TRUE, name)))
+ return SR_ERR;
+
+ sdi->channels = g_slist_append(sdi->channels, ch);
+
+ return SR_OK;
+}
+
+static const char *const channel_names[] = { "P1", "P2" };
+
+static int setup_channels(struct sr_dev_inst *sdi)
+{
+ unsigned int i;
+ int ret;
+
+ ret = SR_ERR_BUG;
+
+ for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
+ ret = add_channel(sdi, channel_names[i]);
+ if (ret != SR_OK)
+ break;
+ }
+
+ return ret;
+}
+
+SR_PRIV void es51919_serial_clean(void *priv)
+{
+ struct dev_context *devc;
+
+ if (!(devc = priv))
+ return;
+
+ dev_buffer_destroy(devc->buf);
+ g_free(devc);
+}
+
+SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
+ const char *vendor,
+ const char *model)
+{
+ struct sr_serial_dev_inst *serial;
+ struct sr_dev_inst *sdi;
+ struct dev_context *devc;
+ int ret;
+
+ serial = NULL;
+ sdi = NULL;
+ devc = NULL;
+
+ if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
+ goto scan_cleanup;
+
+ ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
+ 3000, 9600);
+ if (ret != SR_OK)
+ goto scan_cleanup;
+
+ sr_info("Found device on port %s.", serial->port);
+
+ if (!(sdi = sr_dev_inst_new(SR_ST_INACTIVE, vendor, model, NULL)))
+ goto scan_cleanup;
+
+ if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
+ sr_err("Device context malloc failed.");
+ goto scan_cleanup;
+ }
+
+ if (!(devc->buf = dev_buffer_new(PACKET_SIZE * 8)))
+ goto scan_cleanup;
+
+ devc->freq = -1;
+
+ sdi->inst_type = SR_INST_SERIAL;
+ sdi->conn = serial;
+
+ sdi->priv = devc;
+
+ if (setup_channels(sdi) != SR_OK)
+ goto scan_cleanup;
+
+ return sdi;
+
+scan_cleanup:
+ es51919_serial_clean(devc);
+ if (sdi)
+ sr_dev_inst_free(sdi);
+ if (serial)
+ sr_serial_dev_inst_free(serial);
+
+ return NULL;
+}
+
+SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
+ const struct sr_dev_inst *sdi,
+ const struct sr_channel_group *cg)
+{
+ struct dev_context *devc;
+
+ (void)cg;
+
+ if (!(devc = sdi->priv))
+ return SR_ERR_BUG;
+
+ switch (key) {
+ case SR_CONF_OUTPUT_FREQUENCY:
+ *data = g_variant_new_uint64(frequencies[devc->freq]);
+ break;
+ default:
+ sr_spew("%s: Unsupported key %u", __func__, key);
+ return SR_ERR_NA;
+ }
+
+ return SR_OK;
+}
+
+SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
+ const struct sr_dev_inst *sdi,
+ const struct sr_channel_group *cg)
+{
+ struct dev_context *devc;
+ uint64_t val;
+
+ (void)cg;
+
+ if (!(devc = sdi->priv))
+ return SR_ERR_BUG;
+
+ switch (key) {
+ case SR_CONF_LIMIT_MSEC:
+ val = g_variant_get_uint64(data);
+ dev_time_limit_set(&devc->time_count, val);
+ sr_dbg("Setting time limit to %" PRIu64 ".", val);
+ break;
+ case SR_CONF_LIMIT_SAMPLES:
+ val = g_variant_get_uint64(data);
+ dev_sample_limit_set(&devc->sample_count, val);
+ sr_dbg("Setting sample limit to %" PRIu64 ".", val);
+ break;
+ default:
+ sr_spew("%s: Unsupported key %u", __func__, key);
+ return SR_ERR_NA;
+ }
+
+ return SR_OK;
+}
+
+static const uint32_t scanopts[] = {
+ SR_CONF_CONN,
+ SR_CONF_SERIALCOMM,
+};
+
+static const uint32_t devopts[] = {
+ SR_CONF_LCR_METER,
+ SR_CONF_CONTINUOUS,
+ SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
+ SR_CONF_LIMIT_MSEC | SR_CONF_SET,
+ SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
+};
+
+static const struct std_opt_desc opts = {
+ scanopts, ARRAY_SIZE(scanopts),
+ devopts, ARRAY_SIZE(devopts),
+};
+
+SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
+ const struct sr_dev_inst *sdi,
+ const struct sr_channel_group *cg)
+{
+ (void)sdi;
+ (void)cg;
+
+ if (std_config_list(key, data, &opts) == SR_OK)
+ return SR_OK;
+
+ switch (key) {
+ case SR_CONF_OUTPUT_FREQUENCY:
+ *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
+ frequencies, ARRAY_SIZE(frequencies), sizeof(uint64_t));
+ break;
+ default:
+ sr_spew("%s: Unsupported key %u", __func__, key);
+ return SR_ERR_NA;
+ }
+
+ return SR_OK;
+}
+
+SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi,
+ void *cb_data)
+{
+ struct dev_context *devc;
+ struct sr_serial_dev_inst *serial;
+
+ if (sdi->status != SR_ST_ACTIVE)
+ return SR_ERR_DEV_CLOSED;
+
+ if (!(devc = sdi->priv))
+ return SR_ERR_BUG;
+
+ devc->cb_data = cb_data;
+
+ dev_sample_counter_start(&devc->sample_count);
+ dev_time_counter_start(&devc->time_count);
+
+ /* Send header packet to the session bus. */
+ std_session_send_df_header(cb_data, LOG_PREFIX);
+
+ /* Poll every 50ms, or whenever some data comes in. */
+ serial = sdi->conn;
+ serial_source_add(sdi->session, serial, G_IO_IN, 50,
+ receive_data, (void *)sdi);
+
+ return SR_OK;
+}
+
+SR_PRIV int es51919_serial_acquisition_stop(struct sr_dev_inst *sdi,
+ void *cb_data)
+{
+ return std_serial_dev_acquisition_stop(sdi, cb_data,
+ std_serial_dev_close, sdi->conn, LOG_PREFIX);
+}