# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
+from common.srdhelper import bitpack_msb
import sigrokdecode as srd
'''
def reset(self):
self.samplerate = None
self.ss = self.es = self.ss_byte = -1
- self.bitcount = 0
- self.databyte = 0
self.is_write = None
self.rem_addr_bytes = None
self.is_repeat_start = False
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND ADDRESS'
- self.bitcount = self.databyte = 0
self.is_repeat_start = True
self.is_write = None
self.rem_addr_bytes = None
- self.data_bits = []
+ self.data_bits.clear()
# Gather 8 bits of data plus the ACK/NACK bit.
def handle_address_or_data(self, pins):
scl, sda = pins
self.pdu_bits += 1
- # Address and data are transmitted MSB-first.
- self.databyte <<= 1
- self.databyte |= sda
-
- # Remember the start of the first data/address bit.
- if self.bitcount == 0:
+ # Accumulate a byte's bits, including its start position.
+ # Accumulate individual bits and their start/end sample numbers
+ # as we see them. Get the start sample number at the time when
+ # the bit value gets sampled. Assume the start of the next bit
+ # as the end sample number of the previous bit. Guess the last
+ # bit's end sample number from the second last bit's width.
+ # (gsi: Shouldn't falling SCL be the end of the bit value?)
+ # Keep the bits in receive order (MSB first) during accumulation.
+ if not self.data_bits:
self.ss_byte = self.samplenum
-
- # Store individual bits and their start/end samplenumbers.
- # In the list, index 0 represents the LSB (I²C transmits MSB-first).
- self.data_bits.insert(0, [sda, self.samplenum, self.samplenum])
- if self.bitcount > 0:
- self.data_bits[1][2] = self.samplenum
- if self.bitcount == 7:
- self.bitwidth = self.data_bits[1][2] - self.data_bits[2][2]
- self.data_bits[0][2] += self.bitwidth
-
- # Return if we haven't collected all 8 + 1 bits, yet.
- if self.bitcount < 7:
- self.bitcount += 1
+ if self.data_bits:
+ self.data_bits[-1][2] = self.samplenum
+ self.data_bits.append([sda, self.samplenum, self.samplenum])
+ if len(self.data_bits) < 8:
return
+ self.bitwidth = self.data_bits[-2][2] - self.data_bits[-3][2]
+ self.data_bits[-1][2] += self.bitwidth
- d = self.databyte
+ # Get the byte value. Address and data are transmitted MSB-first.
+ d = bitpack_msb(self.data_bits, 0)
if self.state == 'FIND ADDRESS':
# The READ/WRITE bit is only in the first address byte, not
# in data bytes. Address bit pattern 0b1111_0xxx means that
self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth
+ # Reverse the list of bits to LSB first order before emitting
+ # annotations and passing bits to upper layers. This may be
+ # unexpected because the protocol is MSB first, but it keeps
+ # backwards compatibility.
+ self.data_bits.reverse()
self.putp(['BITS', self.data_bits])
self.putp([cmd, d])
'%s: %02X' % (proto[cmd][2], d), '%02X' % d]])
# Done with this packet.
- self.bitcount = self.databyte = 0
- self.data_bits = []
+ self.data_bits.clear()
self.state = 'FIND ACK'
def get_ack(self, pins):
self.state = 'FIND START'
self.is_repeat_start = False
self.is_write = None
- self.data_bits = []
+ self.data_bits.clear()
def decode(self):
while True: