return TRUE;
}
-static int parse_value(const uint8_t *buf, float *result)
+static int parse_value(const uint8_t *buf, float *result, int *exponent)
{
int i, sign, intval = 0, digits[4];
uint8_t digit_bytes[4];
/* Decimal point position. */
if ((buf[3] & 0x01) != 0) {
floatval /= 1000;
+ *exponent = -3;
sr_spew("Decimal point after first digit.");
} else if ((buf[5] & 0x01) != 0) {
floatval /= 100;
+ *exponent = -2;
sr_spew("Decimal point after second digit.");
} else if ((buf[7] & 0x01) != 0) {
floatval /= 10;
+ *exponent = -1;
sr_spew("Decimal point after third digit.");
} else {
+ *exponent = 0;
sr_spew("No decimal point in the number.");
}
}
static void handle_flags(struct sr_datafeed_analog *analog, float *floatval,
- const struct dtm0660_info *info)
+ int *exponent, const struct dtm0660_info *info)
{
/* Factors */
if (info->is_nano)
- *floatval /= 1000000000;
+ *exponent -= 9;
if (info->is_micro)
- *floatval /= 1000000;
+ *exponent -= 6;
if (info->is_milli)
- *floatval /= 1000;
+ *exponent -= 3;
if (info->is_kilo)
- *floatval *= 1000;
+ *exponent += 3;
if (info->is_mega)
- *floatval *= 1000000;
+ *exponent += 6;
+ *floatval *= powf(10, *exponent);
/* Measurement modes */
if (info->is_volt) {
SR_PRIV int sr_dtm0660_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info)
{
- int ret;
+ int ret, exponent = 0;
struct dtm0660_info *info_local;
info_local = (struct dtm0660_info *)info;
- if ((ret = parse_value(buf, floatval)) != SR_OK) {
+ if ((ret = parse_value(buf, floatval, &exponent)) != SR_OK) {
sr_dbg("Error parsing value: %d.", ret);
return ret;
}
parse_flags(buf, info_local);
- handle_flags(analog, floatval, info_local);
+ handle_flags(analog, floatval, &exponent, info_local);
+
+ analog->encoding->digits = -exponent;
+ analog->spec->spec_digits = -exponent;
return SR_OK;
}