('data-latch', 'Data latch point'),
('ldac-fall', 'LDAC falling edge'),
('bit', 'Bit'),
- ('operation', 'Operation'),
+ ('reg-write', 'Register write'),
+ ('voltage-update', 'Voltage update'),
+ ('voltage-update-all', 'Voltage update (all DACs)'),
)
annotation_rows = (
('bits', 'Bits', (5,)),
('fields', 'Fields', (0, 1, 2)),
- ('operations', 'Operations', (6,)),
+ ('registers', 'Registers', (6, 7)),
+ ('voltage-updates', 'Voltage updates', (8,)),
('events', 'Events', (3, 4)),
)
def __init__(self, **kwargs):
self.oldpins = self.oldclk = self.oldload = self.oldldac = None
- self.datapin = None
self.bits = []
+ self.ss_dac_first = None
self.ss_dac = self.es_dac = 0
self.ss_gain = self.es_gain = 0
self.ss_value = self.es_value = 0
self.dac_select = self.gain = self.dac_value = None
+ self.dacval = {'A': '?', 'B': '?', 'C': '?', 'D': '?'}
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.clock_width = self.es_gain - self.ss_gain
self.es_value = self.bits[10][1] + self.clock_width # Guessed.
+ if self.ss_dac_first is None:
+ self.ss_dac_first = self.ss_dac
+
s = ''.join(str(i[0]) for i in self.bits[:2])
self.dac_select = s = dacs[int(s, 2)]
self.put(self.ss_dac, self.es_dac, self.out_ann,
s, v, g = self.dac_select, self.dac_value, self.gain
self.put(self.samplenum, self.samplenum, self.out_ann,
[3, ['Falling edge on LOAD', 'LOAD fall', 'F']])
- self.put(self.ss_dac, self.es_value, self.out_ann,
- [6, ['Setting %s value to %d (x%d gain)' % (s, v, g),
- '%s=%d (x%d gain)' % (s, v, g)]])
+ if self.ldac == 0:
+ # If LDAC is low, the voltage is set immediately.
+ self.put(self.ss_dac, self.es_value, self.out_ann,
+ [7, ['Setting %s voltage to %d (x%d gain)' % (s, v, g),
+ '%s=%d (x%d gain)' % (s, v, g)]])
+ else:
+ # If LDAC is high, the voltage is not set immediately, but rather
+ # stored in a register. When LDAC goes low all four DAC voltages
+ # (DAC A/B/C/D) will be set at the same time.
+ self.put(self.ss_dac, self.es_value, self.out_ann,
+ [6, ['Setting %s register value to %d (x%d gain)' % \
+ (s, v, g), '%s=%d (x%d gain)' % (s, v, g)]])
+ # Save the last value the respective DAC was set to.
+ self.dacval[self.dac_select[-1]] = str(self.dac_value)
def handle_falling_edge_ldac(self):
self.put(self.samplenum, self.samplenum, self.out_ann,
[4, ['Falling edge on LDAC', 'LDAC fall', 'LDAC', 'L']])
+ # Don't emit any annotations if we didn't see any register writes.
+ if self.ss_dac_first is None:
+ return
+
+ s = ''.join(['DAC%s=%s ' % (d, self.dacval[d]) for d in 'ABCD']).strip()
+ self.put(self.ss_dac_first, self.samplenum, self.out_ann,
+ [8, ['Updating voltages: %s' % s, s, s.replace('DAC', '')]])
+ self.ss_dac_first = None
+
def handle_new_dac_bit(self):
self.bits.append([self.datapin, self.samplenum])
if self.oldpins == pins:
continue
self.oldpins, (clk, self.datapin, load, ldac) = pins, pins
+ self.ldac = ldac
# DATA is shifted in the DAC on the falling CLK edge (MSB-first).
# A falling edge of LOAD will latch the data.