def putm(self, data):
self.put(self.samplenum, self.samplenum, self.out_ann, data)
+ def handle_clk(self, clk, sig):
+ if self.clk_start == self.samplenum:
+ # Clock transition already treated.
+ # We have done everything we can with this sample.
+ return True
+
+ if self.clk_edge(self.oldclk, clk):
+ # Clock edge found.
+ # We note the sample and move to the next state.
+ self.clk_start = self.samplenum
+ self.state = 'SIG'
+ return False
+ else:
+ if self.sig_start is not None \
+ and self.sig_start != self.samplenum \
+ and self.sig_edge(self.oldsig, sig):
+ # If any transition in the resulting signal
+ # occurs while we are waiting for a clock,
+ # we increase the missed signal counter.
+ self.sig_missed += 1
+ self.put(ss, self.samplenum, self.out_sig_missed, self.sig_missed)
+ self.putm([2, ['Missed signal', 'MS']])
+ # No clock edge found, we have done everything we
+ # can with this sample.
+ return True
+
+ def handle_sig(self, clk, sig):
+ if self.sig_start == self.samplenum:
+ # Signal transition already treated.
+ # We have done everything we can with this sample.
+ return True
+
+ if self.sig_edge(self.oldsig, sig):
+ # Signal edge found.
+ # We note the sample, calculate the jitter
+ # and move to the next state.
+ self.sig_start = self.samplenum
+ self.state = 'CLK'
+ # Calculate and report the timing jitter.
+ self.putx((self.sig_start - self.clk_start) / self.samplerate)
+ return False
+ else:
+ if self.clk_start != self.samplenum \
+ and self.clk_edge(self.oldclk, clk):
+ # If any transition in the clock signal
+ # occurs while we are waiting for a resulting
+ # signal, we increase the missed clock counter.
+ self.clk_missed += 1
+ self.put(ss, self.samplenum, self.out_clk_missed, self.clk_missed)
+ self.putm([1, ['Missed clock', 'MC']])
+ # No resulting signal edge found, we have done
+ # everything we can with this sample.
+ return True
+
def decode(self, ss, es, data):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
# State machine:
# For each sample we can move 2 steps forward in the state machine.
while True:
-
# Clock state has the lead.
if self.state == 'CLK':
- if self.clk_start == self.samplenum:
- # Clock transition already treated.
- # We have done everything we can with this sample.
+ if self.handle_clk(clk, sig):
break
- else:
- if self.clk_edge(self.oldclk, clk) is True:
- # Clock edge found.
- # We note the sample and move to the next state.
- self.clk_start = self.samplenum
- self.state = 'SIG'
- else:
- if self.sig_start is not None \
- and self.sig_start != self.samplenum \
- and self.sig_edge(self.oldsig, sig) is True:
- # If any transition in the resulting signal
- # occurs while we are waiting for a clock,
- # we increase the missed signal counter.
- self.sig_missed += 1
- self.put(ss, self.samplenum, self.out_sig_missed, self.sig_missed)
- self.putm([2, ['Missed signal', 'MS']])
- # No clock edge found, we have done everything we
- # can with this sample.
- break
if self.state == 'SIG':
- if self.sig_start == self.samplenum:
- # Signal transition already treated.
- # We have done everything we can with this sample.
+ if self.handle_sig(clk, sig):
break
- else:
- if self.sig_edge(self.oldsig, sig) is True:
- # Signal edge found.
- # We note the sample, calculate the jitter
- # and move to the next state.
- self.sig_start = self.samplenum
- self.state = 'CLK'
- # Calculate and report the timing jitter.
- self.putx((self.sig_start - self.clk_start) / self.samplerate)
- else:
- if self.clk_start != self.samplenum \
- and self.clk_edge(self.oldclk, clk) is True:
- # If any transition in the clock signal
- # occurs while we are waiting for a resulting
- # signal, we increase the missed clock counter.
- self.clk_missed += 1
- self.put(ss, self.samplenum, self.out_clk_missed, self.clk_missed)
- self.putm([1, ['Missed clock', 'MC']])
- # No resulting signal edge found, we have done
- # everything we can with this sample.
- break
# Save current CLK/SIG values for the next round.
self.oldclk, self.oldsig = clk, sig