--- /dev/null
+##
+## This file is part of the libsigrokdecode project.
+##
+## Copyright (C) 2016 Fabian J. Stumpf <sigrok@fabianstumpf.de>
+##
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2 of the License, or
+## (at your option) any later version.
+##
+## This program is distributed in the hope that it will be useful,
+## but WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+## GNU General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with this program; if not, write to the Free Software
+## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+##
+
+import sigrokdecode as srd
+
+class Decoder(srd.Decoder):
+ api_version = 2
+ id = 'dmx512'
+ name = 'DMX512'
+ longname = 'Digital MultipleX 512'
+ desc = 'Professional lighting control protocol.'
+ license = 'gplv2+'
+ inputs = ['logic']
+ outputs = ['dmx512']
+ channels = (
+ {'id': 'dmx', 'name': 'DMX data', 'desc': 'Any DMX data line'},
+ )
+ annotations = (
+ ('bit', 'Bit'),
+ ('break', 'Break'),
+ ('mab', 'Mark after break'),
+ ('startbit', 'Start bit'),
+ ('stopbits', 'Stop bit'),
+ ('startcode', 'Start code'),
+ ('channel', 'Channel'),
+ ('interframe', 'Interframe'),
+ ('interpacket', 'Interpacket'),
+ ('data', 'Data'),
+ ('error', 'Error'),
+ )
+ annotation_rows = (
+ ('name', 'Logical', (1, 2, 5, 6, 7, 8)),
+ ('data', 'Data', (9,)),
+ ('bits', 'Bits', (0, 3, 4)),
+ ('errors', 'Errors', (10,)),
+ )
+
+ def __init__(self):
+ self.samplerate = None
+ self.sample_usec = None
+ self.samplenum = -1
+ self.run_start = -1
+ self.run_bit = 0
+ self.state = 'FIND BREAK'
+
+ def start(self):
+ self.out_ann = self.register(srd.OUTPUT_ANN)
+
+ def metadata(self, key, value):
+ if key == srd.SRD_CONF_SAMPLERATE:
+ self.samplerate = value
+ self.sample_usec = 1 / value * 1000000
+ self.skip_per_bit = int(4 / self.sample_usec)
+
+ def putr(self, data):
+ self.put(self.run_start, self.samplenum, self.out_ann, data)
+
+ def decode(self, ss, es, data):
+ if not self.samplerate:
+ raise SamplerateError('Cannot decode without samplerate.')
+ for (self.samplenum, pins) in data:
+ # Seek for an interval with no state change with a length between
+ # 88 and 1000000 us (BREAK).
+ if self.state == 'FIND BREAK':
+ if self.run_bit == pins[0]:
+ continue
+ runlen = (self.samplenum - self.run_start) * self.sample_usec
+ if runlen > 88 and runlen < 1000000:
+ self.putr([1, ['Break']])
+ self.bit_break = self.run_bit
+ self.state = 'MARK MAB'
+ self.channel = 0
+ elif runlen >= 1000000:
+ # Error condition.
+ self.putr([10, ['Invalid break length']])
+ self.run_bit = pins[0]
+ self.run_start = self.samplenum
+ # Directly following the BREAK is the MARK AFTER BREAK.
+ elif self.state == 'MARK MAB':
+ if self.run_bit == pins[0]:
+ continue
+ self.putr([2, ['MAB']])
+ self.state = 'READ BYTE'
+ self.channel = 0
+ self.bit = 0
+ self.aggreg = pins[0]
+ self.run_start = self.samplenum
+ # Mark and read a single transmitted byte
+ # (start bit, 8 data bits, 2 stop bits).
+ elif self.state == 'READ BYTE':
+ self.next_sample = self.run_start + (self.bit + 1) * self.skip_per_bit
+ self.aggreg += pins[0]
+ if self.samplenum != self.next_sample:
+ continue
+ bit_value = 0 if round(self.aggreg/self.skip_per_bit) == self.bit_break else 1
+
+ if self.bit == 0:
+ self.byte = 0
+ self.putr([3, ['Start bit']])
+ if bit_value != 0:
+ # (Possibly) invalid start bit, mark but don't fail.
+ self.put(self.samplenum, self.samplenum,
+ self.out_ann, [10, ['Invalid start bit']])
+ elif self.bit >= 9:
+ self.put(self.samplenum - self.skip_per_bit,
+ self.samplenum, self.out_ann, [4, ['Stop bit']])
+ if bit_value != 1:
+ # Invalid stop bit, mark.
+ self.put(self.samplenum, self.samplenum,
+ self.out_ann, [10, ['Invalid stop bit']])
+ if self.bit == 10:
+ # On invalid 2nd stop bit, search for new break.
+ self.run_bit = pins[0]
+ self.state = 'FIND BREAK'
+ else:
+ # Label and process one bit.
+ self.put(self.samplenum - self.skip_per_bit,
+ self.samplenum, self.out_ann, [0, [str(bit_value)]])
+ self.byte |= bit_value << (self.bit - 1)
+
+ # Label a complete byte.
+ if self.bit == 10:
+ if self.channel == 0:
+ d = [5, ['Start code']]
+ else:
+ d = [6, ['Channel ' + str(self.channel)]]
+ self.put(self.run_start, self.next_sample, self.out_ann, d)
+ self.put(self.run_start + self.skip_per_bit,
+ self.next_sample - 2 * self.skip_per_bit,
+ self.out_ann, [9, [str(self.byte) + ' / ' + \
+ str(hex(self.byte))]])
+ # Continue by scanning the IFT.
+ self.channel += 1
+ self.run_start = self.samplenum
+ self.run_bit = pins[0]
+ self.state = 'MARK IFT'
+
+ self.aggreg = pins[0]
+ self.bit += 1
+ # Mark the INTERFRAME-TIME between bytes / INTERPACKET-TIME between packets.
+ elif self.state == 'MARK IFT':
+ if self.run_bit == pins[0]:
+ continue
+ if self.channel > 512:
+ self.putr([8, ['Interpacket']])
+ self.state = 'FIND BREAK'
+ self.run_bit = pins[0]
+ self.run_start = self.samplenum
+ else:
+ self.putr([7, ['Interframe']])
+ self.state = 'READ BYTE'
+ self.bit = 0
+ self.run_start = self.samplenum