*
* Copyright (C) 2012 Petteri Aimonen <jpa@sr.mail.kapsi.fi>
* Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
+ * Copyright (C) 2017-2020 Gerhard Sittig <gerhard.sittig@gmx.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-/* The VCD input module has the following options:
- *
- * numchannels: Maximum number of channels to use. The channels are
- * detected in the same order as they are listed
- * in the $var sections of the VCD file.
- *
- * skip: Allows skipping until given timestamp in the file.
- * This can speed up analyzing of long captures.
- *
- * Value < 0: Skip until first timestamp listed in
- * the file. (default)
+/*
+ * The VCD input module has the following options. See the options[]
+ * declaration near the bottom of the input module's source file.
*
- * Value = 0: Do not skip, instead generate samples
- * beginning from timestamp 0.
+ * numchannels: Maximum number of sigrok channels to create. VCD signals
+ * are detected in their order of declaration in the VCD file header,
+ * and mapped to sigrok channels.
*
- * Value > 0: Start at the given timestamp.
+ * skip: Allows to skip data at the start of the input file. This can
+ * speed up operation on long captures.
+ * Value < 0: Skip until first timestamp that is listed in the file.
+ * (This is the default behaviour.)
+ * Value = 0: Do not skip, instead generate samples beginning from
+ * timestamp 0.
+ * Value > 0: Start at the given timestamp.
*
- * downsample: Divide the samplerate by the given factor.
- * This can speed up analyzing of long captures.
+ * downsample: Divide the samplerate by the given factor. This can
+ * speed up operation on long captures.
*
- * compress: Compress idle periods longer than this value.
- * This can speed up analyzing of long captures.
- * Default 0 = don't compress.
+ * compress: Trim idle periods which are longer than this value to span
+ * only this many timescale ticks. This can speed up operation on long
+ * captures (default 0, don't compress).
*
* Based on Verilog standard IEEE Std 1364-2001 Version C
*
* - $var with 'wire' and 'reg' types of scalar variables
* - $timescale definition for samplerate
* - multiple character variable identifiers
+ * - same identifer used for multiple signals (identical values)
+ * - vector variables (bit vectors)
+ * - integer variables (analog signals with 0 digits, passed as single
+ * precision float number)
+ * - real variables (analog signals, passed on with single precision,
+ * arbitrary digits value, not user adjustable)
+ * - nested $scope, results in prefixed sigrok channel names
*
* Most important unsupported features:
- * - vector variables (bit vectors etc.)
- * - analog, integer and real number variables
- * - $dumpvars initial value declaration
- * - $scope namespaces
- * - more than 64 channels
+ * - $dumpvars initial value declaration (is not an issue if generators
+ * provide sample data for the #0 timestamp, otherwise session data
+ * starts from zero values, and catches up when the signal changes its
+ * state to a supported value)
+ *
+ * Implementor's note: This input module specifically does _not_ use
+ * glib routines where they would hurt performance. Lots of memory
+ * allocations increase execution time not by percents but by huge
+ * factors. This motivated this module's custom code for splitting
+ * words on text lines, and pooling previously allocated buffers.
+ *
+ * TODO (in arbitrary order)
+ * - Map VCD scopes to sigrok channel groups?
+ * - Does libsigrok support nested channel groups? Or is this feature
+ * exclusive to Pulseview?
+ * - Check VCD input to VCD output behaviour. Verify that export and
+ * re-import results in identical data (well, VCD's constraints on
+ * timescale values is known to result in differences).
+ * - Cleanup the implementation.
+ * - Consistent use of the glib API (where appropriate).
+ * - More appropriate variable/function identifiers.
+ * - More robust handling of multi-word input phrases and chunked
+ * input buffers? This implementation assumes that e.g. b[01]+
+ * patterns are complete when they start, and the signal identifier
+ * is available as well. Which may be true assuming that input data
+ * comes in complete text lines.
+ * - See if other input modules have learned lessons that we could
+ * benefit from here as well? Pointless BOM (done), line oriented
+ * processing with EOL variants and with optional last EOL, module
+ * state reset and file re-read (stable channels list), buffered
+ * session feed, synchronized feed for mixed signal sources, digits
+ * or formats support for analog input, single vs double precision,
+ * etc.
+ * - Re-consider logging. Verbosity levels should be acceptable,
+ * but volume is an issue. Drop duplicates, and drop messages from
+ * known good code paths.
*/
#include <config.h>
-#include <stdlib.h>
+
#include <glib.h>
-#include <stdio.h>
-#include <string.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
#define LOG_PREFIX "input/vcd"
#define CHUNK_SIZE (4 * 1024 * 1024)
+#define SCOPE_SEP '.'
struct context {
+ struct vcd_user_opt {
+ size_t maxchannels; /* sigrok channels (output) */
+ uint64_t downsample;
+ uint64_t compress;
+ uint64_t skip_starttime;
+ gboolean skip_specified;
+ } options;
+ gboolean use_skip;
gboolean started;
gboolean got_header;
uint64_t prev_timestamp;
uint64_t samplerate;
- unsigned int maxchannels;
- unsigned int channelcount;
- int downsample;
- unsigned compress;
- int64_t skip;
+ size_t vcdsignals; /* VCD signals (input) */
+ GSList *ignored_signals;
+ gboolean data_after_timestamp;
+ gboolean ignore_end_keyword;
gboolean skip_until_end;
GSList *channels;
- size_t bytes_per_sample;
- size_t samples_in_buffer;
- uint8_t *buffer;
- uint8_t *current_levels;
- GSList *prev_sr_channels;
+ size_t unit_size;
+ size_t logic_count;
+ size_t analog_count;
+ uint8_t *current_logic;
+ float *current_floats;
+ struct {
+ size_t max_bits;
+ size_t unit_size;
+ uint8_t *value;
+ size_t sig_count;
+ } conv_bits;
+ GString *scope_prefix;
+ struct feed_queue_logic *feed_logic;
+ struct split_state {
+ size_t alloced;
+ char **words;
+ gboolean in_use;
+ } split;
+ struct vcd_prev {
+ GSList *sr_channels;
+ GSList *sr_groups;
+ } prev;
};
struct vcd_channel {
- gchar *name;
- gchar *identifier;
+ char *name;
+ char *identifier;
+ size_t size;
+ enum sr_channeltype type;
+ size_t array_index;
+ size_t byte_idx;
+ uint8_t bit_mask;
+ char *base_name;
+ size_t range_lower, range_upper;
+ int submit_digits;
+ struct feed_queue_analog *feed_analog;
};
+static void free_channel(void *data)
+{
+ struct vcd_channel *vcd_ch;
+
+ vcd_ch = data;
+ if (!vcd_ch)
+ return;
+
+ g_free(vcd_ch->name);
+ g_free(vcd_ch->identifier);
+ g_free(vcd_ch->base_name);
+ feed_queue_analog_free(vcd_ch->feed_analog);
+
+ g_free(vcd_ch);
+}
+
+/* TODO Drop the local decl when this has become a common helper. */
+void sr_channel_group_free(struct sr_channel_group *cg);
+
+/* Wrapper for GDestroyNotify compatibility. */
+static void cg_free(void *p)
+{
+ sr_channel_group_free(p);
+}
+
+static void check_remove_bom(GString *buf)
+{
+ static const char *bom_text = "\xef\xbb\xbf";
+
+ if (buf->len < strlen(bom_text))
+ return;
+ if (strncmp(buf->str, bom_text, strlen(bom_text)) != 0)
+ return;
+ g_string_erase(buf, 0, strlen(bom_text));
+}
+
/*
* Reads a single VCD section from input file and parses it to name/contents.
* e.g. $timescale 1ps $end => "timescale" "1ps"
*/
-static gboolean parse_section(GString *buf, gchar **name, gchar **contents)
+static gboolean parse_section(GString *buf, char **name, char **contents)
{
- GString *sname, *scontent;
+ static const char *end_text = "$end";
+
gboolean status;
- unsigned int pos;
+ size_t pos, len;
+ const char *grab_start, *grab_end;
+ GString *sname, *scontent;
+ /* Preset falsy return values. Gets updated below. */
*name = *contents = NULL;
status = FALSE;
- pos = 0;
-
- /* Skip UTF8 BOM */
- if (buf->len >= 3 && !strncmp(buf->str, "\xef\xbb\xbf", 3))
- pos = 3;
/* Skip any initial white-space. */
+ pos = 0;
while (pos < buf->len && g_ascii_isspace(buf->str[pos]))
pos++;
if (buf->str[pos++] != '$')
return FALSE;
- sname = g_string_sized_new(32);
- scontent = g_string_sized_new(128);
-
/* Read the section tag. */
+ grab_start = &buf->str[pos];
while (pos < buf->len && !g_ascii_isspace(buf->str[pos]))
- g_string_append_c(sname, buf->str[pos++]);
+ pos++;
+ grab_end = &buf->str[pos];
+ sname = g_string_new_len(grab_start, grab_end - grab_start);
/* Skip whitespace before content. */
while (pos < buf->len && g_ascii_isspace(buf->str[pos]))
pos++;
- /* Read the content. */
- while (pos < buf->len - 4 && strncmp(buf->str + pos, "$end", 4))
- g_string_append_c(scontent, buf->str[pos++]);
-
- if (sname->len && pos < buf->len - 4 && !strncmp(buf->str + pos, "$end", 4)) {
- status = TRUE;
- pos += 4;
+ /* Read the content up to the '$end' marker. */
+ scontent = g_string_sized_new(128);
+ grab_start = &buf->str[pos];
+ grab_end = g_strstr_len(grab_start, buf->len - pos, end_text);
+ if (grab_end) {
+ /* Advance 'pos' to after '$end' and more whitespace. */
+ pos = grab_end - buf->str;
+ pos += strlen(end_text);
while (pos < buf->len && g_ascii_isspace(buf->str[pos]))
pos++;
+
+ /* Grab the (trimmed) content text. */
+ while (grab_end > grab_start && g_ascii_isspace(grab_end[-1]))
+ grab_end--;
+ len = grab_end - grab_start;
+ g_string_append_len(scontent, grab_start, len);
+ if (sname->len)
+ status = TRUE;
+
+ /* Consume the input text which just was taken. */
g_string_erase(buf, 0, pos);
}
+ /* Return section name and content if a section was seen. */
*name = g_string_free(sname, !status);
*contents = g_string_free(scontent, !status);
- if (*contents)
- g_strchomp(*contents);
return status;
}
-static void free_channel(void *data)
+/*
+ * The glib routine which splits an input text into a list of words also
+ * "provides empty strings" which application code then needs to remove.
+ * And copies of the input text get allocated for all words.
+ *
+ * The repeated memory allocation is acceptable for small workloads like
+ * parsing the header sections. But the heavy lifting for sample data is
+ * done by DIY code to speedup execution. The use of glib routines would
+ * severely hurt throughput. Allocated memory gets re-used while a strict
+ * ping-pong pattern is assumed (each text line of input data enters and
+ * leaves in a strict symmetrical manner, due to the organization of the
+ * receive() routine and parse calls).
+ */
+
+/* Remove empty parts from an array returned by g_strsplit(). */
+static void remove_empty_parts(gchar **parts)
+{
+ gchar **src, **dest;
+
+ src = dest = parts;
+ while (*src) {
+ if (!**src) {
+ g_free(*src);
+ } else {
+ if (dest != src)
+ *dest = *src;
+ dest++;
+ }
+ src++;
+ }
+ *dest = NULL;
+}
+
+static char **split_text_line(struct context *inc, char *text, size_t *count)
+{
+ struct split_state *state;
+ size_t counted, alloced, wanted;
+ char **words, *p, **new_words;
+
+ state = &inc->split;
+
+ if (count)
+ *count = 0;
+
+ if (state->in_use) {
+ sr_dbg("coding error, split() called while \"in use\".");
+ return NULL;
+ }
+
+ /*
+ * Seed allocation when invoked for the first time. Assume
+ * simple logic data, start with a few words per line. Will
+ * automatically adjust with subsequent use.
+ */
+ if (!state->alloced) {
+ alloced = 20;
+ words = g_malloc(sizeof(words[0]) * alloced);
+ if (!words)
+ return NULL;
+ state->alloced = alloced;
+ state->words = words;
+ }
+
+ /* Start with most recently allocated word list space. */
+ alloced = state->alloced;
+ words = state->words;
+ counted = 0;
+
+ /* As long as more input text remains ... */
+ p = text;
+ while (*p) {
+ /* Resize word list if needed. Just double the size. */
+ if (counted + 1 >= alloced) {
+ wanted = 2 * alloced;
+ new_words = g_realloc(words, sizeof(words[0]) * wanted);
+ if (!new_words) {
+ return NULL;
+ }
+ words = new_words;
+ alloced = wanted;
+ state->words = words;
+ state->alloced = alloced;
+ }
+
+ /* Skip leading spaces. */
+ while (g_ascii_isspace(*p))
+ p++;
+ if (!*p)
+ break;
+
+ /* Add found word to word list. */
+ words[counted++] = p;
+
+ /* Find end of the word. Terminate loop upon EOS. */
+ while (*p && !g_ascii_isspace(*p))
+ p++;
+ if (!*p)
+ break;
+
+ /* More text follows. Terminate the word. */
+ *p++ = '\0';
+ }
+
+ /*
+ * NULL terminate the word list. Provide its length so that
+ * calling code need not re-iterate the list to get the count.
+ */
+ words[counted] = NULL;
+ if (count)
+ *count = counted;
+ state->in_use = TRUE;
+
+ return words;
+}
+
+static void free_text_split(struct context *inc, char **words)
+{
+ struct split_state *state;
+
+ state = &inc->split;
+
+ if (words && words != state->words) {
+ sr_dbg("coding error, free() arg differs from split() result.");
+ }
+
+ /* "Double free" finally releases the memory. */
+ if (!state->in_use) {
+ g_free(state->words);
+ state->words = NULL;
+ state->alloced = 0;
+ }
+
+ /* Mark as no longer in use. */
+ state->in_use = FALSE;
+}
+
+static gboolean have_header(GString *buf)
+{
+ static const char *enddef_txt = "$enddefinitions";
+ static const char *end_txt = "$end";
+
+ char *p, *p_stop;
+
+ /* Search for "end of definitions" section keyword. */
+ p = g_strstr_len(buf->str, buf->len, enddef_txt);
+ if (!p)
+ return FALSE;
+ p += strlen(enddef_txt);
+
+ /* Search for end of section (content expected to be empty). */
+ p_stop = &buf->str[buf->len];
+ p_stop -= strlen(end_txt);
+ while (p < p_stop && g_ascii_isspace(*p))
+ p++;
+ if (strncmp(p, end_txt, strlen(end_txt)) != 0)
+ return FALSE;
+ p += strlen(end_txt);
+
+ return TRUE;
+}
+
+static int parse_timescale(struct context *inc, char *contents)
{
+ uint64_t p, q;
+
+ /*
+ * The standard allows for values 1, 10 or 100
+ * and units s, ms, us, ns, ps and fs.
+ */
+ if (sr_parse_period(contents, &p, &q) != SR_OK) {
+ sr_err("Parsing $timescale failed.");
+ return SR_ERR_DATA;
+ }
+
+ inc->samplerate = q / p;
+ sr_dbg("Samplerate: %" PRIu64, inc->samplerate);
+ if (q % p != 0) {
+ /* Does not happen unless time value is non-standard */
+ sr_warn("Inexact rounding of samplerate, %" PRIu64 " / %" PRIu64 " to %" PRIu64 " Hz.",
+ q, p, inc->samplerate);
+ }
+
+ return SR_OK;
+}
+
+/*
+ * Handle '$scope' and '$upscope' sections in the input file. Assume that
+ * input signals have a "base name", which may be ambiguous within the
+ * file. These names get declared within potentially nested scopes, which
+ * this implementation uses to create longer but hopefully unique and
+ * thus more usable sigrok channel names.
+ *
+ * Track the currently effective scopes in a string variable to simplify
+ * the channel name creation. Start from an empty string, then append the
+ * scope name and a separator when a new scope opens, and remove the last
+ * scope name when a scope closes. This allows to simply prefix basenames
+ * with the current scope to get a full name.
+ *
+ * It's an implementation detail to keep the trailing NUL here in the
+ * GString member, to simplify the g_strconcat() call in the channel name
+ * creation.
+ *
+ * TODO
+ * - Check whether scope types must get supported, this implementation
+ * does not distinguish between 'module' and 'begin' and what else
+ * may be seen. The first word simply gets ignored.
+ * - Check the allowed alphabet for scope names. This implementation
+ * assumes "programming language identifier" style (alphanumeric with
+ * underscores, plus brackets since we've seen them in example files).
+ */
+static int parse_scope(struct context *inc, char *contents, gboolean is_up)
+{
+ char *sep_pos, *name_pos;
+ char **parts;
+ size_t length;
+
+ /*
+ * The 'upscope' case, drop one scope level (if available). Accept
+ * excess 'upscope' calls, assume that a previous 'scope' section
+ * was ignored because it referenced our software package's name.
+ */
+ if (is_up) {
+ /*
+ * Check for a second right-most separator (and position
+ * right behind that, which is the start of the last
+ * scope component), or fallback to the start of string.
+ * g_string_erase() from that positon to the end to drop
+ * the last component.
+ */
+ name_pos = inc->scope_prefix->str;
+ do {
+ sep_pos = strrchr(name_pos, SCOPE_SEP);
+ if (!sep_pos)
+ break;
+ *sep_pos = '\0';
+ sep_pos = strrchr(name_pos, SCOPE_SEP);
+ if (!sep_pos)
+ break;
+ name_pos = ++sep_pos;
+ } while (0);
+ length = name_pos - inc->scope_prefix->str;
+ g_string_truncate(inc->scope_prefix, length);
+ g_string_append_c(inc->scope_prefix, '\0');
+ sr_dbg("$upscope, prefix now: \"%s\"", inc->scope_prefix->str);
+ return SR_OK;
+ }
+
+ /*
+ * The 'scope' case, add another scope level. But skip our own
+ * package name, assuming that this is an artificial node which
+ * was emitted by libsigrok's VCD output module.
+ */
+ sr_spew("$scope, got: \"%s\"", contents);
+ parts = g_strsplit_set(contents, " \r\n\t", 0);
+ remove_empty_parts(parts);
+ length = g_strv_length(parts);
+ if (length != 2) {
+ sr_err("Unsupported 'scope' syntax: %s", contents);
+ g_strfreev(parts);
+ return SR_ERR_DATA;
+ }
+ name_pos = parts[1];
+ if (strcmp(name_pos, PACKAGE_NAME) == 0) {
+ sr_info("Skipping scope with application's package name: %s",
+ name_pos);
+ *name_pos = '\0';
+ }
+ if (*name_pos) {
+ /* Drop NUL, append scope name and separator, and re-add NUL. */
+ g_string_truncate(inc->scope_prefix, inc->scope_prefix->len - 1);
+ g_string_append_printf(inc->scope_prefix,
+ "%s%c%c", name_pos, SCOPE_SEP, '\0');
+ }
+ g_strfreev(parts);
+ sr_dbg("$scope, prefix now: \"%s\"", inc->scope_prefix->str);
+
+ return SR_OK;
+}
+
+/**
+ * Parse a $var section which describes a VCD signal ("variable").
+ *
+ * @param[in] inc Input module context.
+ * @param[in] contents Input text, content of $var section.
+ */
+static int parse_header_var(struct context *inc, char *contents)
+{
+ char **parts;
+ size_t length;
+ char *type, *size_txt, *id, *ref, *idx;
+ gboolean is_reg, is_wire, is_real, is_int;
+ enum sr_channeltype ch_type;
+ size_t size, next_size;
struct vcd_channel *vcd_ch;
- vcd_ch = data;
- if (!vcd_ch)
- return;
- g_free(vcd_ch->name);
- g_free(vcd_ch->identifier);
- g_free(vcd_ch);
+ /*
+ * Format of $var or $reg header specs:
+ * $var type size identifier reference [opt-index] $end
+ */
+ parts = g_strsplit_set(contents, " \r\n\t", 0);
+ remove_empty_parts(parts);
+ length = g_strv_length(parts);
+ if (length != 4 && length != 5) {
+ sr_warn("$var section should have 4 or 5 items");
+ g_strfreev(parts);
+ return SR_ERR_DATA;
+ }
+
+ type = parts[0];
+ size_txt = parts[1];
+ id = parts[2];
+ ref = parts[3];
+ idx = parts[4];
+ if (idx && !*idx)
+ idx = NULL;
+ is_reg = g_strcmp0(type, "reg") == 0;
+ is_wire = g_strcmp0(type, "wire") == 0;
+ is_real = g_strcmp0(type, "real") == 0;
+ is_int = g_strcmp0(type, "integer") == 0;
+
+ if (is_reg || is_wire) {
+ ch_type = SR_CHANNEL_LOGIC;
+ } else if (is_real || is_int) {
+ ch_type = SR_CHANNEL_ANALOG;
+ } else {
+ sr_info("Unsupported signal type: '%s'", type);
+ g_strfreev(parts);
+ return SR_ERR_DATA;
+ }
+
+ size = strtol(size_txt, NULL, 10);
+ if (ch_type == SR_CHANNEL_ANALOG) {
+ if (is_real && size != 32 && size != 64) {
+ /*
+ * The VCD input module does not depend on the
+ * specific width of the floating point value.
+ * This is just for information. Upon value
+ * changes, a mere string gets converted to
+ * float, so we may not care at all.
+ *
+ * Strictly speaking we might warn for 64bit
+ * (double precision) declarations, because
+ * sigrok internally uses single precision
+ * (32bit) only.
+ */
+ sr_info("Unexpected real width: '%s'", size_txt);
+ }
+ /* Simplify code paths below, by assuming size 1. */
+ size = 1;
+ }
+ if (!size) {
+ sr_warn("Unsupported signal size: '%s'", size_txt);
+ g_strfreev(parts);
+ return SR_ERR_DATA;
+ }
+ if (inc->conv_bits.max_bits < size)
+ inc->conv_bits.max_bits = size;
+ next_size = inc->logic_count + inc->analog_count + size;
+ if (inc->options.maxchannels && next_size > inc->options.maxchannels) {
+ sr_warn("Skipping '%s%s', exceeds requested channel count %zu.",
+ ref, idx ? idx : "", inc->options.maxchannels);
+ inc->ignored_signals = g_slist_append(inc->ignored_signals,
+ g_strdup(id));
+ g_strfreev(parts);
+ return SR_OK;
+ }
+
+ vcd_ch = g_malloc0(sizeof(*vcd_ch));
+ vcd_ch->identifier = g_strdup(id);
+ vcd_ch->name = g_strconcat(inc->scope_prefix->str, ref, idx, NULL);
+ vcd_ch->size = size;
+ vcd_ch->type = ch_type;
+ switch (ch_type) {
+ case SR_CHANNEL_LOGIC:
+ vcd_ch->array_index = inc->logic_count;
+ vcd_ch->byte_idx = vcd_ch->array_index / 8;
+ vcd_ch->bit_mask = 1 << (vcd_ch->array_index % 8);
+ inc->logic_count += size;
+ break;
+ case SR_CHANNEL_ANALOG:
+ vcd_ch->array_index = inc->analog_count++;
+ /* TODO: Use proper 'digits' value for this input module. */
+ vcd_ch->submit_digits = is_real ? 2 : 0;
+ break;
+ }
+ inc->vcdsignals++;
+ sr_spew("VCD signal %zu '%s' ID '%s' (size %zu), sr type %s, idx %zu.",
+ inc->vcdsignals, vcd_ch->name,
+ vcd_ch->identifier, vcd_ch->size,
+ vcd_ch->type == SR_CHANNEL_ANALOG ? "A" : "L",
+ vcd_ch->array_index);
+ inc->channels = g_slist_append(inc->channels, vcd_ch);
+ g_strfreev(parts);
+
+ return SR_OK;
}
-/* Remove empty parts from an array returned by g_strsplit. */
-static void remove_empty_parts(gchar **parts)
+/**
+ * Construct the name of the nth sigrok channel for a VCD signal.
+ *
+ * Uses the VCD signal name for scalar types and single-bit signals.
+ * Uses "signal.idx" for multi-bit VCD signals without a range spec in
+ * their declaration. Uses "signal[idx]" when a range is known and was
+ * verified.
+ *
+ * @param[in] vcd_ch The VCD signal's description.
+ * @param[in] idx The sigrok channel's index within the VCD signal's group.
+ *
+ * @return An allocated text buffer which callers need to release, #NULL
+ * upon failure to create a sigrok channel name.
+ */
+static char *get_channel_name(struct vcd_channel *vcd_ch, size_t idx)
{
- gchar **src = parts;
- gchar **dest = parts;
- while (*src != NULL) {
- if (**src != '\0')
- *dest++ = *src;
- src++;
+ char *open_pos, *close_pos, *check_pos, *endptr;
+ gboolean has_brackets, has_range;
+ size_t upper, lower, tmp;
+ char *ch_name;
+
+ /* Handle simple scalar types, and single-bit logic first. */
+ if (vcd_ch->size <= 1)
+ return g_strdup(vcd_ch->name);
+
+ /*
+ * If not done before: Search for a matching pair of brackets in
+ * the right-most position at the very end of the string. Get the
+ * two colon separated numbers between the brackets, which are
+ * the range limits for array indices into the multi-bit signal.
+ * Grab the "base name" of the VCD signal.
+ *
+ * Notice that arrays can get nested. Earlier path components can
+ * be indexed as well, that's why we need the right-most range.
+ * This implementation does not handle bit vectors of size 1 here
+ * by explicit logic. The check for a [0:0] range would even fail.
+ * But the case of size 1 is handled above, and "happens to" give
+ * the expected result (just the VCD signal name).
+ *
+ * This implementation also deals with range limits in the reverse
+ * order, as well as ranges which are not 0-based (like "[4:7]").
+ */
+ if (!vcd_ch->base_name) {
+ has_range = TRUE;
+ open_pos = strrchr(vcd_ch->name, '[');
+ close_pos = strrchr(vcd_ch->name, ']');
+ if (close_pos && close_pos[1])
+ close_pos = NULL;
+ has_brackets = open_pos && close_pos && close_pos > open_pos;
+ if (!has_brackets)
+ has_range = FALSE;
+ if (has_range) {
+ check_pos = &open_pos[1];
+ endptr = NULL;
+ upper = strtoul(check_pos, &endptr, 10);
+ if (!endptr || *endptr != ':')
+ has_range = FALSE;
+ }
+ if (has_range) {
+ check_pos = &endptr[1];
+ endptr = NULL;
+ lower = strtoul(check_pos, &endptr, 10);
+ if (!endptr || endptr != close_pos)
+ has_range = FALSE;
+ }
+ if (has_range && lower > upper) {
+ tmp = lower;
+ lower = upper;
+ upper = tmp;
+ }
+ if (has_range) {
+ if (lower >= upper)
+ has_range = FALSE;
+ if (upper + 1 - lower != vcd_ch->size)
+ has_range = FALSE;
+ }
+ if (has_range) {
+ /* Temporarily patch the VCD channel's name. */
+ *open_pos = '\0';
+ vcd_ch->base_name = g_strdup(vcd_ch->name);
+ *open_pos = '[';
+ vcd_ch->range_lower = lower;
+ vcd_ch->range_upper = upper;
+ }
}
+ has_range = vcd_ch->range_lower + vcd_ch->range_upper;
+ if (has_range && idx >= vcd_ch->size)
+ has_range = FALSE;
+ if (!has_range)
+ return g_strdup_printf("%s.%zu", vcd_ch->name, idx);
- *dest = NULL;
+ /*
+ * Create a sigrok channel name with just the bit's index in
+ * brackets. This avoids "name[7:0].3" results, instead results
+ * in "name[3]".
+ */
+ ch_name = g_strdup_printf("%s[%zu]",
+ vcd_ch->base_name, vcd_ch->range_lower + idx);
+ return ch_name;
+}
+
+/*
+ * Create (analog or logic) sigrok channels for the VCD signals. Create
+ * multiple sigrok channels for vector input since sigrok has no concept
+ * of multi-bit signals. Create a channel group for the vector's bits
+ * though to reflect that they form a unit. This is beneficial when UIs
+ * support optional "collapsed" displays of channel groups (like
+ * "parallel bus, hex output").
+ *
+ * Defer channel creation until after completion of parsing the input
+ * file header. Make sure to create all logic channels first before the
+ * analog channels get created. This avoids issues with the mapping of
+ * channel indices to bitmap positions in the sample buffer.
+ */
+static void create_channels(const struct sr_input *in,
+ struct sr_dev_inst *sdi, enum sr_channeltype ch_type)
+{
+ struct context *inc;
+ size_t ch_idx;
+ GSList *l;
+ struct vcd_channel *vcd_ch;
+ size_t size_idx;
+ char *ch_name;
+ struct sr_channel_group *cg;
+ struct sr_channel *ch;
+
+ inc = in->priv;
+
+ ch_idx = 0;
+ if (ch_type > SR_CHANNEL_LOGIC)
+ ch_idx += inc->logic_count;
+ if (ch_type > SR_CHANNEL_ANALOG)
+ ch_idx += inc->analog_count;
+ for (l = inc->channels; l; l = l->next) {
+ vcd_ch = l->data;
+ if (vcd_ch->type != ch_type)
+ continue;
+ cg = NULL;
+ if (vcd_ch->size != 1) {
+ cg = g_malloc0(sizeof(*cg));
+ cg->name = g_strdup(vcd_ch->name);
+ }
+ for (size_idx = 0; size_idx < vcd_ch->size; size_idx++) {
+ ch_name = get_channel_name(vcd_ch, size_idx);
+ sr_dbg("sigrok channel idx %zu, name %s, type %s, en %d.",
+ ch_idx, ch_name,
+ ch_type == SR_CHANNEL_ANALOG ? "A" : "L", TRUE);
+ ch = sr_channel_new(sdi, ch_idx, ch_type, TRUE, ch_name);
+ g_free(ch_name);
+ ch_idx++;
+ if (cg)
+ cg->channels = g_slist_append(cg->channels, ch);
+ }
+ if (cg)
+ sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
+ }
+}
+
+static void create_feeds(const struct sr_input *in)
+{
+ struct context *inc;
+ GSList *l;
+ struct vcd_channel *vcd_ch;
+ size_t ch_idx;
+ struct sr_channel *ch;
+
+ inc = in->priv;
+
+ /* Create one feed for logic data. */
+ inc->unit_size = (inc->logic_count + 7) / 8;
+ inc->feed_logic = feed_queue_logic_alloc(in->sdi,
+ CHUNK_SIZE / inc->unit_size, inc->unit_size);
+
+ /* Create one feed per analog channel. */
+ for (l = inc->channels; l; l = l->next) {
+ vcd_ch = l->data;
+ if (vcd_ch->type != SR_CHANNEL_ANALOG)
+ continue;
+ ch_idx = vcd_ch->array_index;
+ ch_idx += inc->logic_count;
+ ch = g_slist_nth_data(in->sdi->channels, ch_idx);
+ vcd_ch->feed_analog = feed_queue_analog_alloc(in->sdi,
+ CHUNK_SIZE / sizeof(float),
+ vcd_ch->submit_digits, ch);
+ }
}
/*
struct context *inc;
inc = in->priv;
- g_slist_free_full(inc->prev_sr_channels, sr_channel_free_cb);
- inc->prev_sr_channels = in->sdi->channels;
+
+ g_slist_free_full(inc->prev.sr_groups, cg_free);
+ inc->prev.sr_groups = in->sdi->channel_groups;
+ in->sdi->channel_groups = NULL;
+
+ g_slist_free_full(inc->prev.sr_channels, sr_channel_free_cb);
+ inc->prev.sr_channels = in->sdi->channels;
in->sdi->channels = NULL;
}
* re-read file, then make sure to keep using the previous channel list,
* applications may still reference them.
*/
-static int check_header_in_reread(const struct sr_input *in)
+static gboolean check_header_in_reread(const struct sr_input *in)
{
struct context *inc;
inc = in->priv;
if (!inc)
return FALSE;
- if (!inc->prev_sr_channels)
+ if (!inc->prev.sr_channels)
return TRUE;
- if (sr_channel_lists_differ(inc->prev_sr_channels, in->sdi->channels)) {
+ if (sr_channel_lists_differ(inc->prev.sr_channels, in->sdi->channels)) {
sr_err("Channel list change not supported for file re-read.");
return FALSE;
}
+
+ g_slist_free_full(in->sdi->channel_groups, cg_free);
+ in->sdi->channel_groups = inc->prev.sr_groups;
+ inc->prev.sr_groups = NULL;
+
g_slist_free_full(in->sdi->channels, sr_channel_free_cb);
- in->sdi->channels = inc->prev_sr_channels;
- inc->prev_sr_channels = NULL;
+ in->sdi->channels = inc->prev.sr_channels;
+ inc->prev.sr_channels = NULL;
return TRUE;
}
-/*
- * Parse VCD header to get values for context structure.
- * The context structure should be zeroed before calling this.
- */
-static gboolean parse_header(const struct sr_input *in, GString *buf)
+/* Parse VCD file header sections (rate and variables declarations). */
+static int parse_header(const struct sr_input *in, GString *buf)
{
- struct vcd_channel *vcd_ch;
- uint64_t p, q;
struct context *inc;
gboolean status;
- gchar *name, *contents, **parts;
+ char *name, *contents;
+ size_t size;
inc = in->priv;
- name = contents = NULL;
+
+ /* Parse sections until complete header was seen. */
status = FALSE;
+ name = contents = NULL;
+ inc->conv_bits.max_bits = 1;
while (parse_section(buf, &name, &contents)) {
sr_dbg("Section '%s', contents '%s'.", name, contents);
if (g_strcmp0(name, "enddefinitions") == 0) {
status = TRUE;
- break;
- } else if (g_strcmp0(name, "timescale") == 0) {
- /*
- * The standard allows for values 1, 10 or 100
- * and units s, ms, us, ns, ps and fs.
- */
- if (sr_parse_period(contents, &p, &q) == SR_OK) {
- inc->samplerate = q / p;
- if (q % p != 0) {
- /* Does not happen unless time value is non-standard */
- sr_warn("Inexact rounding of samplerate, %" PRIu64 " / %" PRIu64 " to %" PRIu64 " Hz.",
- q, p, inc->samplerate);
- }
-
- sr_dbg("Samplerate: %" PRIu64, inc->samplerate);
- } else {
- sr_err("Parsing timescale failed.");
- }
- } else if (g_strcmp0(name, "var") == 0) {
- /* Format: $var type size identifier reference [opt. index] $end */
- unsigned int length;
-
- parts = g_strsplit_set(contents, " \r\n\t", 0);
- remove_empty_parts(parts);
- length = g_strv_length(parts);
-
- if (length != 4 && length != 5)
- sr_warn("$var section should have 4 or 5 items");
- else if (g_strcmp0(parts[0], "reg") != 0 && g_strcmp0(parts[0], "wire") != 0)
- sr_info("Unsupported signal type: '%s'", parts[0]);
- else if (strtol(parts[1], NULL, 10) != 1)
- sr_info("Unsupported signal size: '%s'", parts[1]);
- else if (inc->maxchannels && inc->channelcount >= inc->maxchannels)
- sr_warn("Skipping '%s%s' because only %d channels requested.",
- parts[3], parts[4] ? : "", inc->maxchannels);
- else {
- vcd_ch = g_malloc(sizeof(struct vcd_channel));
- vcd_ch->identifier = g_strdup(parts[2]);
- if (length == 4)
- vcd_ch->name = g_strdup(parts[3]);
- else
- vcd_ch->name = g_strconcat(parts[3], parts[4], NULL);
-
- sr_info("Channel %d is '%s' identified by '%s'.",
- inc->channelcount, vcd_ch->name, vcd_ch->identifier);
-
- sr_channel_new(in->sdi, inc->channelcount++, SR_CHANNEL_LOGIC, TRUE, vcd_ch->name);
- inc->channels = g_slist_append(inc->channels, vcd_ch);
- }
-
- g_strfreev(parts);
+ goto done_section;
+ }
+ if (g_strcmp0(name, "timescale") == 0) {
+ if (parse_timescale(inc, contents) != SR_OK)
+ status = FALSE;
+ goto done_section;
+ }
+ if (g_strcmp0(name, "scope") == 0) {
+ if (parse_scope(inc, contents, FALSE) != SR_OK)
+ status = FALSE;
+ goto done_section;
+ }
+ if (g_strcmp0(name, "upscope") == 0) {
+ if (parse_scope(inc, NULL, TRUE) != SR_OK)
+ status = FALSE;
+ goto done_section;
+ }
+ if (g_strcmp0(name, "var") == 0) {
+ if (parse_header_var(inc, contents) != SR_OK)
+ status = FALSE;
+ goto done_section;
}
+done_section:
g_free(name);
name = NULL;
g_free(contents);
contents = NULL;
+
+ if (status)
+ break;
}
g_free(name);
g_free(contents);
- /*
- * Compute how many bytes each sample will have and initialize the
- * current levels. The current levels will be updated whenever VCD
- * has changes.
- */
- inc->bytes_per_sample = (inc->channelcount + 7) / 8;
- inc->current_levels = g_malloc0(inc->bytes_per_sample);
-
inc->got_header = status;
- if (status)
- status = check_header_in_reread(in);
-
- return status;
-}
-
-static int format_match(GHashTable *metadata, unsigned int *confidence)
-{
- GString *buf, *tmpbuf;
- gboolean status;
- gchar *name, *contents;
+ if (!status)
+ return SR_ERR_DATA;
- buf = g_hash_table_lookup(metadata, GINT_TO_POINTER(SR_INPUT_META_HEADER));
- tmpbuf = g_string_new_len(buf->str, buf->len);
+ /* Create sigrok channels here, late, logic before analog. */
+ create_channels(in, in->sdi, SR_CHANNEL_LOGIC);
+ create_channels(in, in->sdi, SR_CHANNEL_ANALOG);
+ if (!check_header_in_reread(in))
+ return SR_ERR_DATA;
+ create_feeds(in);
/*
- * If we can parse the first section correctly,
- * then it is assumed to be a VCD file.
+ * Allocate space for text to number conversion, and buffers to
+ * hold current sample values before submission to the session
+ * feed. Allocate one buffer for all logic bits, and another for
+ * all floating point values of all analog channels.
+ *
+ * The buffers get updated when the VCD input stream communicates
+ * value changes. Upon reception of VCD timestamps, the buffer can
+ * provide the previously received values, to "fill in the gaps"
+ * in the generation of a continuous stream of samples for the
+ * sigrok session.
*/
- status = parse_section(tmpbuf, &name, &contents);
- g_string_free(tmpbuf, TRUE);
- g_free(name);
- g_free(contents);
-
- if (!status)
- return SR_ERR;
- *confidence = 1;
+ size = (inc->conv_bits.max_bits + 7) / 8;
+ inc->conv_bits.unit_size = size;
+ inc->conv_bits.value = g_malloc0(size);
+ if (!inc->conv_bits.value)
+ return SR_ERR_MALLOC;
+
+ size = (inc->logic_count + 7) / 8;
+ inc->unit_size = size;
+ inc->current_logic = g_malloc0(size);
+ if (inc->unit_size && !inc->current_logic)
+ return SR_ERR_MALLOC;
+ size = sizeof(inc->current_floats[0]) * inc->analog_count;
+ inc->current_floats = g_malloc0(size);
+ if (size && !inc->current_floats)
+ return SR_ERR_MALLOC;
+ for (size = 0; size < inc->analog_count; size++)
+ inc->current_floats[size] = 0.;
return SR_OK;
}
-/* Send all accumulated bytes from inc->buffer. */
-static void send_buffer(const struct sr_input *in)
+/*
+ * Add N copies of previously received values to the session, before
+ * subsequent value changes will update the data buffer. Locally buffer
+ * sample data to minimize the number of send() calls.
+ */
+static void add_samples(const struct sr_input *in, size_t count, gboolean flush)
{
struct context *inc;
- struct sr_datafeed_packet packet;
- struct sr_datafeed_logic logic;
+ GSList *ch_list;
+ struct vcd_channel *vcd_ch;
+ struct feed_queue_analog *q;
+ float value;
inc = in->priv;
- if (inc->samples_in_buffer == 0)
- return;
+ if (inc->logic_count) {
+ feed_queue_logic_submit(inc->feed_logic,
+ inc->current_logic, count);
+ if (flush)
+ feed_queue_logic_flush(inc->feed_logic);
+ }
+ for (ch_list = inc->channels; ch_list; ch_list = ch_list->next) {
+ vcd_ch = ch_list->data;
+ if (vcd_ch->type != SR_CHANNEL_ANALOG)
+ continue;
+ q = vcd_ch->feed_analog;
+ if (!q)
+ continue;
+ value = inc->current_floats[vcd_ch->array_index];
+ feed_queue_analog_submit(q, value, count);
+ if (flush)
+ feed_queue_analog_flush(q);
+ }
+}
- packet.type = SR_DF_LOGIC;
- packet.payload = &logic;
- logic.unitsize = inc->bytes_per_sample;
- logic.data = inc->buffer;
- logic.length = inc->bytes_per_sample * inc->samples_in_buffer;
- sr_session_send(in->sdi, &packet);
- inc->samples_in_buffer = 0;
+static gint vcd_compare_id(gconstpointer a, gconstpointer b)
+{
+ return strcmp((const char *)a, (const char *)b);
}
-/*
- * Add N copies of the current sample to buffer.
- * When the buffer fills up, automatically send it.
- */
-static void add_samples(const struct sr_input *in, size_t count)
+static gboolean is_ignored(struct context *inc, const char *id)
{
- struct context *inc;
- size_t samples_per_chunk;
- size_t space_left, i;
- uint8_t *p;
+ GSList *ignored;
- inc = in->priv;
- samples_per_chunk = CHUNK_SIZE / inc->bytes_per_sample;
+ ignored = g_slist_find_custom(inc->ignored_signals, id, vcd_compare_id);
+ return ignored != NULL;
+}
- while (count) {
- space_left = samples_per_chunk - inc->samples_in_buffer;
+/*
+ * Get an analog channel's value from a bit pattern (VCD 'integer' type).
+ * The implementation assumes a maximum integer width (64bit), the API
+ * doesn't (beyond the return data type). The use of SR_CHANNEL_ANALOG
+ * channels may further constraint the number of significant digits
+ * (current asumption: float -> 23bit).
+ */
+static float get_int_val(uint8_t *in_bits_data, size_t in_bits_count)
+{
+ uint64_t int_value;
+ size_t byte_count, byte_idx;
+ float flt_value; /* typeof(inc->current_floats[0]) */
+
+ /* Convert bit pattern to integer number (limited range). */
+ int_value = 0;
+ byte_count = (in_bits_count + 7) / 8;
+ for (byte_idx = 0; byte_idx < byte_count; byte_idx++) {
+ if (byte_idx >= sizeof(int_value))
+ break;
+ int_value |= *in_bits_data++ << (byte_idx * 8);
+ }
+ flt_value = int_value;
- if (space_left > count)
- space_left = count;
+ return flt_value;
+}
- p = inc->buffer + inc->samples_in_buffer * inc->bytes_per_sample;
- for (i = 0; i < space_left; i++) {
- memcpy(p, inc->current_levels, inc->bytes_per_sample);
- p += inc->bytes_per_sample;
- inc->samples_in_buffer++;
- count--;
+/*
+ * Set a logic channel's level depending on the VCD signal's identifier
+ * and parsed value. Multi-bit VCD values will affect several sigrok
+ * channels. One VCD signal name can translate to several sigrok channels.
+ */
+static void process_bits(struct context *inc, char *identifier,
+ uint8_t *in_bits_data, size_t in_bits_count)
+{
+ size_t size;
+ gboolean have_int;
+ GSList *l;
+ struct vcd_channel *vcd_ch;
+ float int_val;
+ size_t bit_idx;
+ uint8_t *in_bit_ptr, in_bit_mask;
+ uint8_t *out_bit_ptr, out_bit_mask;
+ uint8_t bit_val;
+
+ size = 0;
+ have_int = FALSE;
+ int_val = 0;
+ for (l = inc->channels; l; l = l->next) {
+ vcd_ch = l->data;
+ if (g_strcmp0(identifier, vcd_ch->identifier) != 0)
+ continue;
+ if (vcd_ch->type == SR_CHANNEL_ANALOG) {
+ /* Special case for 'integer' VCD signal types. */
+ size = vcd_ch->size; /* Flag for "VCD signal found". */
+ if (!have_int) {
+ int_val = get_int_val(in_bits_data, in_bits_count);
+ have_int = TRUE;
+ }
+ inc->current_floats[vcd_ch->array_index] = int_val;
+ continue;
+ }
+ if (vcd_ch->type != SR_CHANNEL_LOGIC)
+ continue;
+ sr_spew("Processing %s data, id '%s', ch %zu sz %zu",
+ (size == 1) ? "bit" : "vector",
+ identifier, vcd_ch->array_index, vcd_ch->size);
+
+ /* Found our (logic) channel. Setup in/out bit positions. */
+ size = vcd_ch->size;
+ in_bit_ptr = in_bits_data;
+ in_bit_mask = 1 << 0;
+ out_bit_ptr = &inc->current_logic[vcd_ch->byte_idx];
+ out_bit_mask = vcd_ch->bit_mask;
+
+ /*
+ * Pass VCD input bit(s) to sigrok logic bits. Conversion
+ * must be done repeatedly because one VCD signal name
+ * can translate to several sigrok channels, and shifting
+ * a previously computed bit field to another channel's
+ * position in the buffer would be nearly as expensive,
+ * and certain would increase complexity of the code.
+ */
+ for (bit_idx = 0; bit_idx < size; bit_idx++) {
+ /* Get the bit value from input data. */
+ bit_val = 0;
+ if (bit_idx < in_bits_count) {
+ bit_val = *in_bit_ptr & in_bit_mask;
+ in_bit_mask <<= 1;
+ if (!in_bit_mask) {
+ in_bit_mask = 1 << 0;
+ in_bit_ptr++;
+ }
+ }
+ /* Manipulate the sample buffer data image. */
+ if (bit_val)
+ *out_bit_ptr |= out_bit_mask;
+ else
+ *out_bit_ptr &= ~out_bit_mask;
+ /* Update output position after bitmap update. */
+ out_bit_mask <<= 1;
+ if (!out_bit_mask) {
+ out_bit_mask = 1 << 0;
+ out_bit_ptr++;
+ }
}
-
- if (inc->samples_in_buffer == samples_per_chunk)
- send_buffer(in);
}
+ if (!size && !is_ignored(inc, identifier))
+ sr_warn("VCD signal not found for ID '%s'.", identifier);
}
-/* Set the channel level depending on the identifier and parsed value. */
-static void process_bit(struct context *inc, char *identifier, unsigned int bit)
+/*
+ * Set an analog channel's value from a floating point number. One
+ * VCD signal name can translate to several sigrok channels.
+ */
+static void process_real(struct context *inc, char *identifier, float real_val)
{
+ gboolean found;
GSList *l;
struct vcd_channel *vcd_ch;
- unsigned int j;
- for (j = 0, l = inc->channels; j < inc->channelcount && l; j++, l = l->next) {
+ found = FALSE;
+ for (l = inc->channels; l; l = l->next) {
vcd_ch = l->data;
- if (g_strcmp0(identifier, vcd_ch->identifier) == 0) {
- /* Found our channel. */
- size_t byte_idx = (j / 8);
- size_t bit_idx = j - 8 * byte_idx;
- if (bit)
- inc->current_levels[byte_idx] |= (uint8_t)1 << bit_idx;
- else
- inc->current_levels[byte_idx] &= ~((uint8_t)1 << bit_idx);
- break;
- }
+ if (vcd_ch->type != SR_CHANNEL_ANALOG)
+ continue;
+ if (g_strcmp0(identifier, vcd_ch->identifier) != 0)
+ continue;
+
+ /* Found our (analog) channel. */
+ found = TRUE;
+ sr_spew("Processing real data, id '%s', ch %zu, val %.16g",
+ identifier, vcd_ch->array_index, real_val);
+ inc->current_floats[vcd_ch->array_index] = real_val;
}
- if (j == inc->channelcount)
- sr_dbg("Did not find channel for identifier '%s'.", identifier);
+ if (!found && !is_ignored(inc, identifier))
+ sr_warn("VCD signal not found for ID '%s'.", identifier);
+}
+
+/*
+ * Converts a bit position's text character to a number value.
+ *
+ * TODO Check for complete coverage of Verilog's standard logic values
+ * (IEEE-1364). The set is said to be “01XZHUWL-”, which only a part of
+ * is handled here. What would be the complete mapping?
+ * - 0/L -> bit value 0
+ * - 1/H -> bit value 1
+ * - X "don't care" -> TODO
+ * - Z "high impedance" -> TODO
+ * - W "weak(?)" -> TODO
+ * - U "undefined" -> TODO
+ * - '-' "TODO" -> TODO
+ *
+ * For simplicity, this input module implementation maps "known low"
+ * values to 0, and "known high" values to 1. All other values will
+ * end up assuming "low" (return number 0), while callers might warn.
+ * It's up to users to provide compatible input data, or accept the
+ * warnings. Silently accepting unknown input data is not desirable.
+ */
+static uint8_t vcd_char_to_value(char bit_char, int *warn)
+{
+
+ bit_char = g_ascii_tolower(bit_char);
+
+ /* Convert the "undisputed" variants. */
+ if (bit_char == '0' || bit_char == 'l')
+ return 0;
+ if (bit_char == '1' || bit_char == 'h')
+ return 1;
+
+ /* Convert the "uncertain" variants. */
+ if (warn)
+ *warn = 1;
+ if (bit_char == 'x' || bit_char == 'z')
+ return 0;
+ if (bit_char == 'u')
+ return 0;
+
+ /* Unhandled input text. */
+ return ~0;
}
-/* Parse a set of lines from the data section. */
-static void parse_contents(const struct sr_input *in, char *data)
+/* Parse one text line of the data section. */
+static int parse_textline(const struct sr_input *in, char *lines)
{
struct context *inc;
+ int ret;
+ char **words;
+ size_t word_count, word_idx;
+ char *curr_word, *next_word, curr_first;
+ gboolean is_timestamp, is_section, is_real, is_multibit, is_singlebit;
uint64_t timestamp;
- unsigned int bit, i;
- char **tokens;
+ char *identifier;
+ size_t count;
inc = in->priv;
- /* Read one space-delimited token at a time. */
- tokens = g_strsplit_set(data, " \t\r\n", 0);
- remove_empty_parts(tokens);
- for (i = 0; tokens[i]; i++) {
+ /*
+ * Split the caller's text lines into a list of space separated
+ * words. Note that some of the branches consume the very next
+ * words as well, and assume that both adjacent words will be
+ * available when the first word is seen. This constraint applies
+ * to bit vector data, multi-bit integers and real (float) data,
+ * as well as single-bit data with whitespace before its
+ * identifier (if that's valid in VCD, we'd accept it here).
+ * The fact that callers always pass complete text lines should
+ * make this assumption acceptable.
+ */
+ ret = SR_OK;
+ words = split_text_line(inc, lines, &word_count);
+ for (word_idx = 0; word_idx < word_count; word_idx++) {
+ /*
+ * Make the next two words available, to simpilify code
+ * paths below. The second word is optional here.
+ */
+ curr_word = words[word_idx];
+ if (!curr_word && !curr_word[0])
+ continue;
+ curr_first = g_ascii_tolower(curr_word[0]);
+ next_word = words[word_idx + 1];
+ if (next_word && !next_word[0])
+ next_word = NULL;
+
+ /*
+ * Optionally skip some sections that can be interleaved
+ * with data (and may or may not be supported by this
+ * input module). If the section is not skipped but the
+ * $end keyword needs to get tracked, specifically handle
+ * this case, for improved robustness (still reject files
+ * which happen to use invalid syntax).
+ */
if (inc->skip_until_end) {
- if (!strcmp(tokens[i], "$end")) {
+ if (strcmp(curr_word, "$end") == 0) {
/* Done with unhandled/unknown section. */
+ sr_dbg("done skipping until $end");
inc->skip_until_end = FALSE;
- break;
+ } else {
+ sr_spew("skipping word: %s", curr_word);
+ }
+ continue;
+ }
+ if (inc->ignore_end_keyword) {
+ if (strcmp(curr_word, "$end") == 0) {
+ sr_dbg("done ignoring $end keyword");
+ inc->ignore_end_keyword = FALSE;
+ continue;
}
}
- if (tokens[i][0] == '#' && g_ascii_isdigit(tokens[i][1])) {
- /* Numeric value beginning with # is a new timestamp value */
- timestamp = strtoull(tokens[i] + 1, NULL, 10);
- if (inc->downsample > 1)
- timestamp /= inc->downsample;
+ /*
+ * There may be $keyword sections inside the data part of
+ * the input file. Do inspect some of the sections' content
+ * but ignore their surrounding keywords. Silently skip
+ * unsupported section types (which transparently covers
+ * $comment sections).
+ */
+ is_section = curr_first == '$' && curr_word[1];
+ if (is_section) {
+ gboolean inspect_data;
+
+ inspect_data = FALSE;
+ inspect_data |= g_strcmp0(curr_word, "$dumpvars") == 0;
+ inspect_data |= g_strcmp0(curr_word, "$dumpon") == 0;
+ inspect_data |= g_strcmp0(curr_word, "$dumpoff") == 0;
+ if (inspect_data) {
+ /* Ignore keywords, yet parse contents. */
+ sr_dbg("%s section, will parse content", curr_word);
+ inc->ignore_end_keyword = TRUE;
+ } else {
+ /* Ignore section from here up to $end. */
+ sr_dbg("%s section, will skip until $end", curr_word);
+ inc->skip_until_end = TRUE;
+ }
+ continue;
+ }
+
+ /*
+ * Numbers prefixed by '#' are timestamps, which translate
+ * to sigrok sample numbers. Apply optional downsampling,
+ * and apply the 'skip' logic. Check the recent timestamp
+ * for plausibility. Submit the corresponding number of
+ * samples of previously accumulated data values to the
+ * session feed.
+ */
+ is_timestamp = curr_first == '#' && g_ascii_isdigit(curr_word[1]);
+ if (is_timestamp) {
+ timestamp = strtoull(&curr_word[1], NULL, 10);
+ sr_spew("Got timestamp: %" PRIu64, timestamp);
+ if (inc->options.downsample > 1) {
+ timestamp /= inc->options.downsample;
+ sr_spew("Downsampled timestamp: %" PRIu64, timestamp);
+ }
/*
* Skip < 0 => skip until first timestamp.
* Skip = 0 => don't skip
* Skip > 0 => skip until timestamp >= skip.
*/
- if (inc->skip < 0) {
- inc->skip = timestamp;
+ if (inc->options.skip_specified && !inc->use_skip) {
+ sr_dbg("Seeding use of skip");
+ inc->use_skip = TRUE;
+ }
+ if (!inc->use_skip) {
+ sr_dbg("First timestamp, and no skip used");
+ inc->options.skip_starttime = timestamp;
inc->prev_timestamp = timestamp;
- } else if (inc->skip > 0 && timestamp < (uint64_t)inc->skip) {
- inc->prev_timestamp = inc->skip;
- } else if (timestamp == inc->prev_timestamp) {
- /* Ignore repeated timestamps (e.g. sigrok outputs these) */
- } else if (timestamp < inc->prev_timestamp) {
- sr_err("Invalid timestamp: %" PRIu64 " (smaller than previous timestamp).", timestamp);
- inc->skip_until_end = TRUE;
+ inc->use_skip = TRUE;
+ continue;
+ }
+ if (inc->options.skip_starttime && timestamp < inc->options.skip_starttime) {
+ sr_spew("Timestamp skipped, before user spec");
+ inc->prev_timestamp = inc->options.skip_starttime;
+ continue;
+ }
+ if (timestamp == inc->prev_timestamp) {
+ /*
+ * Ignore repeated timestamps (e.g. sigrok
+ * outputs these). Can also happen when
+ * downsampling makes distinct input values
+ * end up at the same scaled down value.
+ * Also transparently covers the initial
+ * timestamp.
+ */
+ sr_spew("Timestamp is identical to previous timestamp");
+ continue;
+ }
+ if (timestamp < inc->prev_timestamp) {
+ sr_err("Invalid timestamp: %" PRIu64 " (leap backwards).", timestamp);
+ ret = SR_ERR_DATA;
break;
- } else {
- if (inc->compress != 0 && timestamp - inc->prev_timestamp > inc->compress) {
- /* Compress long idle periods */
- inc->prev_timestamp = timestamp - inc->compress;
+ }
+ if (inc->options.compress) {
+ /* Compress long idle periods */
+ count = timestamp - inc->prev_timestamp;
+ if (count > inc->options.compress) {
+ sr_dbg("Long idle period, compressing");
+ count = timestamp - inc->options.compress;
+ inc->prev_timestamp = count;
}
-
- sr_dbg("New timestamp: %" PRIu64, timestamp);
-
- /* Generate samples from prev_timestamp up to timestamp - 1. */
- add_samples(in, timestamp - inc->prev_timestamp);
- inc->prev_timestamp = timestamp;
}
- } else if (tokens[i][0] == '$' && tokens[i][1] != '\0') {
- /*
- * This is probably a $dumpvars, $comment or similar.
- * $dump* contain useful data.
- */
- if (g_strcmp0(tokens[i], "$dumpvars") == 0
- || g_strcmp0(tokens[i], "$dumpon") == 0
- || g_strcmp0(tokens[i], "$dumpoff") == 0
- || g_strcmp0(tokens[i], "$end") == 0) {
- /* Ignore, parse contents as normally. */
- } else {
- /* Ignore this and future lines until $end. */
- inc->skip_until_end = TRUE;
+
+ /* Generate samples from prev_timestamp up to timestamp - 1. */
+ sr_spew("Got a new timestamp, feeding samples");
+ count = timestamp - inc->prev_timestamp;
+ add_samples(in, count, FALSE);
+ inc->prev_timestamp = timestamp;
+ inc->data_after_timestamp = FALSE;
+ continue;
+ }
+ inc->data_after_timestamp = TRUE;
+
+ /*
+ * Data values come in different formats, are associated
+ * with channel identifiers, and correspond to the period
+ * of time from the most recent timestamp to the next
+ * timestamp.
+ *
+ * Supported input data formats are:
+ * - R<value> <sep> <id> (analog channel, VCD type 'real').
+ * - B<value> <sep> <id> (analog channel, VCD type 'integer').
+ * - B<value> <sep> <id> (logic channels, VCD bit vectors).
+ * - <value> <id> (logic channel, VCD single-bit values).
+ *
+ * Input values can be:
+ * - Floating point numbers.
+ * - Bit strings (which covers multi-bit aka integers
+ * as well as vectors).
+ * - Single bits.
+ *
+ * Things to note:
+ * - Individual bits can be 0/1 which is supported by
+ * libsigrok, or x or z which is treated like 0 here
+ * (sigrok lacks support for ternary logic, neither is
+ * there support for the full IEEE set of values).
+ * - Single-bit values typically won't be separated from
+ * the signal identifer, multi-bit values and floats
+ * are separated (will reference the next word). This
+ * implementation silently accepts separators for
+ * single-bit values, too.
+ */
+ is_real = curr_first == 'r' && curr_word[1];
+ is_multibit = curr_first == 'b' && curr_word[1];
+ is_singlebit = curr_first == '0' || curr_first == '1';
+ is_singlebit |= curr_first == 'x' || curr_first == 'z';
+ if (is_real) {
+ char *real_text;
+ float real_val;
+
+ real_text = &curr_word[1];
+ identifier = next_word;
+ word_idx++;
+ if (!*real_text || !identifier || !*identifier) {
+ sr_err("Unexpected real format.");
+ ret = SR_ERR_DATA;
break;
}
- } else if (strchr("rR", tokens[i][0]) != NULL) {
- sr_dbg("Real type vector values not supported yet!");
- if (!tokens[++i])
- /* No tokens left, bail out */
+ sr_spew("Got real data %s for id '%s'.",
+ real_text, identifier);
+ if (sr_atof_ascii(real_text, &real_val) != SR_OK) {
+ sr_err("Cannot convert value: %s.", real_text);
+ ret = SR_ERR_DATA;
break;
- else
- /* Process next token */
- continue;
- } else if (strchr("bB", tokens[i][0]) != NULL) {
- bit = (tokens[i][1] == '1');
-
- /*
- * Bail out if a) char after 'b' is NUL, or b) there is
- * a second character after 'b', or c) there is no
- * identifier.
+ }
+ process_real(inc, identifier, real_val);
+ continue;
+ }
+ if (is_multibit) {
+ char *bits_text_start;
+ size_t bit_count;
+ char *bits_text, bit_char;
+ uint8_t bit_value;
+ uint8_t *value_ptr, value_mask;
+ GString *bits_val_text;
+
+ /* TODO
+ * Fold in single-bit code path here? To re-use
+ * the X/Z support. Current redundancy is few so
+ * there is little pressure to unify code paths.
+ * Also multi-bit handling is often different
+ * from single-bit handling, so the "unified"
+ * path would often check for special cases. So
+ * we may never unify code paths at all here.
*/
- if (!tokens[i][1] || tokens[i][2] || !tokens[++i]) {
- sr_dbg("Unexpected vector format!");
+ bits_text = &curr_word[1];
+ identifier = next_word;
+ word_idx++;
+
+ if (!*bits_text || !identifier || !*identifier) {
+ sr_err("Unexpected integer/vector format.");
+ ret = SR_ERR_DATA;
break;
}
-
- process_bit(inc, tokens[i], bit);
- } else if (strchr("01xXzZ", tokens[i][0]) != NULL) {
- char *identifier;
-
- /* A new 1-bit sample value */
- bit = (tokens[i][0] == '1');
+ sr_spew("Got integer/vector data %s for id '%s'.",
+ bits_text, identifier);
/*
- * The identifier is either the next character, or, if
- * there was whitespace after the bit, the next token.
+ * Accept a bit string of arbitrary length (sort
+ * of, within the limits of the previously setup
+ * conversion buffer). The input text omits the
+ * leading zeroes, hence we convert from end to
+ * the start, to get the significant bits. There
+ * should only be errors for invalid input, or
+ * for input that is rather strange (data holds
+ * more bits than the signal's declaration in
+ * the header suggested). Silently accept data
+ * that fits in the conversion buffer, and has
+ * more significant bits than the signal's type
+ * (that'd be non-sence yet acceptable input).
*/
- if (tokens[i][1] == '\0') {
- if (!tokens[++i]) {
- sr_dbg("Identifier missing!");
+ bits_text_start = bits_text;
+ bits_text += strlen(bits_text);
+ bit_count = bits_text - bits_text_start;
+ if (bit_count > inc->conv_bits.max_bits) {
+ sr_err("Value exceeds conversion buffer: %s",
+ bits_text_start);
+ ret = SR_ERR_DATA;
+ break;
+ }
+ memset(inc->conv_bits.value, 0, inc->conv_bits.unit_size);
+ value_ptr = &inc->conv_bits.value[0];
+ value_mask = 1 << 0;
+ inc->conv_bits.sig_count = 0;
+ while (bits_text > bits_text_start) {
+ inc->conv_bits.sig_count++;
+ bit_char = *(--bits_text);
+ bit_value = vcd_char_to_value(bit_char, NULL);
+ if (bit_value == 0) {
+ /* EMPTY */
+ } else if (bit_value == 1) {
+ *value_ptr |= value_mask;
+ } else {
+ inc->conv_bits.sig_count = 0;
break;
}
- identifier = tokens[i];
- } else {
- identifier = tokens[i] + 1;
+ value_mask <<= 1;
+ if (!value_mask) {
+ value_ptr++;
+ value_mask = 1 << 0;
+ }
}
- process_bit(inc, identifier, bit);
- } else {
- sr_warn("Skipping unknown token '%s'.", tokens[i]);
+ if (!inc->conv_bits.sig_count) {
+ sr_err("Unexpected vector format: %s",
+ bits_text_start);
+ ret = SR_ERR_DATA;
+ break;
+ }
+ if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
+ bits_val_text = sr_hexdump_new(inc->conv_bits.value,
+ value_ptr - inc->conv_bits.value + 1);
+ sr_spew("Vector value: %s.", bits_val_text->str);
+ sr_hexdump_free(bits_val_text);
+ }
+
+ process_bits(inc, identifier,
+ inc->conv_bits.value, inc->conv_bits.sig_count);
+ continue;
}
+ if (is_singlebit) {
+ char *bits_text, bit_char;
+ uint8_t bit_value;
+
+ /* Get the value text, and signal identifier. */
+ bits_text = &curr_word[0];
+ bit_char = *bits_text;
+ if (!bit_char) {
+ sr_err("Bit value missing.");
+ ret = SR_ERR_DATA;
+ break;
+ }
+ identifier = ++bits_text;
+ if (!*identifier) {
+ identifier = next_word;
+ word_idx++;
+ }
+ if (!identifier || !*identifier) {
+ sr_err("Identifier missing.");
+ ret = SR_ERR_DATA;
+ break;
+ }
+
+ /* Convert value text to single-bit number. */
+ bit_value = vcd_char_to_value(bit_char, NULL);
+ if (bit_value != 0 && bit_value != 1) {
+ sr_err("Unsupported bit value '%c'.", bit_char);
+ ret = SR_ERR_DATA;
+ break;
+ }
+ inc->conv_bits.value[0] = bit_value;
+ process_bits(inc, identifier, inc->conv_bits.value, 1);
+ continue;
+ }
+
+ /* Design choice: Consider unsupported input fatal. */
+ sr_err("Unknown token '%s'.", curr_word);
+ ret = SR_ERR_DATA;
+ break;
}
- g_strfreev(tokens);
+ free_text_split(inc, words);
+
+ return ret;
}
-static int init(struct sr_input *in, GHashTable *options)
+static int process_buffer(struct sr_input *in, gboolean is_eof)
{
struct context *inc;
+ uint64_t samplerate;
+ GVariant *gvar;
+ int ret;
+ char *rdptr, *endptr, *trimptr;
+ size_t rdlen;
- inc = in->priv = g_malloc0(sizeof(struct context));
+ inc = in->priv;
- inc->maxchannels = g_variant_get_int32(g_hash_table_lookup(options, "numchannels"));
- inc->downsample = g_variant_get_int32(g_hash_table_lookup(options, "downsample"));
- if (inc->downsample < 1)
- inc->downsample = 1;
+ /* Send feed header and samplerate (once) before sample data. */
+ if (!inc->started) {
+ std_session_send_df_header(in->sdi);
- inc->compress = g_variant_get_int32(g_hash_table_lookup(options, "compress"));
- inc->skip = g_variant_get_int32(g_hash_table_lookup(options, "skip"));
- inc->skip /= inc->downsample;
+ samplerate = inc->samplerate / inc->options.downsample;
+ if (samplerate) {
+ gvar = g_variant_new_uint64(samplerate);
+ sr_session_send_meta(in->sdi, SR_CONF_SAMPLERATE, gvar);
+ }
- in->sdi = g_malloc0(sizeof(struct sr_dev_inst));
- in->priv = inc;
+ inc->started = TRUE;
+ }
- inc->buffer = g_malloc(CHUNK_SIZE);
+ /*
+ * Workaround broken generators which output incomplete text
+ * lines. Enforce the trailing line feed. Proper input is not
+ * harmed by another empty line of input data.
+ */
+ if (is_eof)
+ g_string_append_c(in->buf, '\n');
+
+ /* Find and process complete text lines in the input data. */
+ ret = SR_OK;
+ rdptr = in->buf->str;
+ while (TRUE) {
+ rdlen = &in->buf->str[in->buf->len] - rdptr;
+ endptr = g_strstr_len(rdptr, rdlen, "\n");
+ if (!endptr)
+ break;
+ trimptr = endptr;
+ *endptr++ = '\0';
+ while (g_ascii_isspace(*rdptr))
+ rdptr++;
+ while (trimptr > rdptr && g_ascii_isspace(trimptr[-1]))
+ *(--trimptr) = '\0';
+ if (!*rdptr) {
+ rdptr = endptr;
+ continue;
+ }
+ ret = parse_textline(in, rdptr);
+ rdptr = endptr;
+ if (ret != SR_OK)
+ break;
+ }
+ rdlen = rdptr - in->buf->str;
+ g_string_erase(in->buf, 0, rdlen);
- return SR_OK;
+ return ret;
}
-static gboolean have_header(GString *buf)
+static int format_match(GHashTable *metadata, unsigned int *confidence)
{
- unsigned int pos;
- char *p;
+ GString *buf, *tmpbuf;
+ gboolean status;
+ char *name, *contents;
- if (!(p = g_strstr_len(buf->str, buf->len, "$enddefinitions")))
- return FALSE;
- pos = p - buf->str + 15;
- while (pos < buf->len - 4 && g_ascii_isspace(buf->str[pos]))
- pos++;
- if (!strncmp(buf->str + pos, "$end", 4))
- return TRUE;
+ buf = g_hash_table_lookup(metadata,
+ GINT_TO_POINTER(SR_INPUT_META_HEADER));
+ tmpbuf = g_string_new_len(buf->str, buf->len);
+
+ /*
+ * If we can parse the first section correctly, then it is
+ * assumed that the input is in VCD format.
+ */
+ check_remove_bom(tmpbuf);
+ status = parse_section(tmpbuf, &name, &contents);
+ g_string_free(tmpbuf, TRUE);
+ g_free(name);
+ g_free(contents);
+
+ if (!status)
+ return SR_ERR;
- return FALSE;
+ *confidence = 1;
+ return SR_OK;
}
-static int process_buffer(struct sr_input *in)
+static int init(struct sr_input *in, GHashTable *options)
{
- struct sr_datafeed_packet packet;
- struct sr_datafeed_meta meta;
- struct sr_config *src;
struct context *inc;
- uint64_t samplerate;
- char *p;
+ GVariant *data;
- inc = in->priv;
- if (!inc->started) {
- std_session_send_df_header(in->sdi);
+ inc = g_malloc0(sizeof(*inc));
- packet.type = SR_DF_META;
- packet.payload = &meta;
- samplerate = inc->samplerate / inc->downsample;
- src = sr_config_new(SR_CONF_SAMPLERATE, g_variant_new_uint64(samplerate));
- meta.config = g_slist_append(NULL, src);
- sr_session_send(in->sdi, &packet);
- g_slist_free(meta.config);
- sr_config_free(src);
+ data = g_hash_table_lookup(options, "numchannels");
+ inc->options.maxchannels = g_variant_get_uint32(data);
- inc->started = TRUE;
- }
+ data = g_hash_table_lookup(options, "downsample");
+ inc->options.downsample = g_variant_get_uint64(data);
+ if (inc->options.downsample < 1)
+ inc->options.downsample = 1;
- while ((p = g_strrstr_len(in->buf->str, in->buf->len, "\n"))) {
- *p = '\0';
- g_strstrip(in->buf->str);
- if (in->buf->str[0] != '\0')
- parse_contents(in, in->buf->str);
- g_string_erase(in->buf, 0, p - in->buf->str + 1);
+ data = g_hash_table_lookup(options, "compress");
+ inc->options.compress = g_variant_get_uint64(data);
+ inc->options.compress /= inc->options.downsample;
+
+ data = g_hash_table_lookup(options, "skip");
+ if (data) {
+ inc->options.skip_specified = TRUE;
+ inc->options.skip_starttime = g_variant_get_uint64(data);
+ inc->options.skip_starttime /= inc->options.downsample;
}
+ in->sdi = g_malloc0(sizeof(*in->sdi));
+ in->priv = inc;
+
+ inc->scope_prefix = g_string_new("\0");
+
return SR_OK;
}
struct context *inc;
int ret;
+ inc = in->priv;
+
+ /* Collect all input chunks, potential deferred processing. */
g_string_append_len(in->buf, buf->str, buf->len);
+ if (!inc->got_header && in->buf->len == buf->len)
+ check_remove_bom(in->buf);
- inc = in->priv;
+ /* Must complete reception of the VCD header first. */
if (!inc->got_header) {
if (!have_header(in->buf))
return SR_OK;
- if (!parse_header(in, in->buf))
- /* There was a header in there, but it was malformed. */
- return SR_ERR;
-
- in->sdi_ready = TRUE;
+ ret = parse_header(in, in->buf);
+ if (ret != SR_OK)
+ return ret;
/* sdi is ready, notify frontend. */
+ in->sdi_ready = TRUE;
return SR_OK;
}
- ret = process_buffer(in);
+ /* Process sample data. */
+ ret = process_buffer(in, FALSE);
return ret;
}
{
struct context *inc;
int ret;
+ size_t count;
inc = in->priv;
+ /* Must complete processing of previously received chunks. */
if (in->sdi_ready)
- ret = process_buffer(in);
+ ret = process_buffer(in, TRUE);
else
ret = SR_OK;
- /* Send any samples that haven't been sent yet. */
- send_buffer(in);
+ /* Flush most recently queued sample data when EOF is seen. */
+ count = inc->data_after_timestamp ? 1 : 0;
+ add_samples(in, count, TRUE);
+ /* Must send DF_END when DF_HEADER was sent before. */
if (inc->started)
std_session_send_df_end(in->sdi);
struct context *inc;
inc = in->priv;
+
keep_header_for_reread(in);
+
g_slist_free_full(inc->channels, free_channel);
inc->channels = NULL;
-
- g_free(inc->buffer);
- inc->buffer = NULL;
- g_free(inc->current_levels);
- inc->current_levels = NULL;
+ feed_queue_logic_free(inc->feed_logic);
+ inc->feed_logic = NULL;
+ g_free(inc->conv_bits.value);
+ inc->conv_bits.value = NULL;
+ g_free(inc->current_logic);
+ inc->current_logic = NULL;
+ g_free(inc->current_floats);
+ inc->current_floats = NULL;
+ g_string_free(inc->scope_prefix, TRUE);
+ inc->scope_prefix = NULL;
+ g_slist_free_full(inc->ignored_signals, g_free);
+ inc->ignored_signals = NULL;
+ free_text_split(inc, NULL);
}
static int reset(struct sr_input *in)
{
- struct context *inc = in->priv;
+ struct context *inc;
+ struct vcd_user_opt save;
+ struct vcd_prev prev;
+
+ inc = in->priv;
+ /* Relase previously allocated resources. */
cleanup(in);
g_string_truncate(in->buf, 0);
- inc->started = FALSE;
- inc->got_header = FALSE;
- inc->prev_timestamp = 0;
- inc->skip_until_end = FALSE;
- inc->channelcount = 0;
- /* The inc->channels list was released in cleanup() above. */
- inc->buffer = g_malloc(CHUNK_SIZE);
+ /* Restore part of the context, init() won't run again. */
+ save = inc->options;
+ prev = inc->prev;
+ memset(inc, 0, sizeof(*inc));
+ inc->options = save;
+ inc->prev = prev;
+ inc->scope_prefix = g_string_new("\0");
return SR_OK;
}
+enum vcd_option_t {
+ OPT_NUM_CHANS,
+ OPT_DOWN_SAMPLE,
+ OPT_SKIP_COUNT,
+ OPT_COMPRESS,
+ OPT_MAX,
+};
+
static struct sr_option options[] = {
- { "numchannels", "Number of logic channels", "The number of (logic) channels in the data", NULL, NULL },
- { "skip", "Skip samples until timestamp", "Skip samples until the specified timestamp; "
- "< 0: Skip until first timestamp listed; 0: Don't skip", NULL, NULL },
- { "downsample", "Downsampling factor", "Downsample, i.e. divide the samplerate by the specified factor", NULL, NULL },
- { "compress", "Compress idle periods", "Compress idle periods longer than the specified value", NULL, NULL },
- ALL_ZERO
+ [OPT_NUM_CHANS] = {
+ "numchannels", "Max number of sigrok channels",
+ "The maximum number of sigrok channels to create for VCD input signals.",
+ NULL, NULL,
+ },
+ [OPT_DOWN_SAMPLE] = {
+ "downsample", "Downsampling factor",
+ "Downsample the input file's samplerate, i.e. divide by the specified factor.",
+ NULL, NULL,
+ },
+ [OPT_SKIP_COUNT] = {
+ "skip", "Skip this many initial samples",
+ "Skip samples until the specified timestamp. "
+ "By default samples start at the first timestamp in the file. "
+ "Value 0 creates samples starting at timestamp 0. "
+ "Values above 0 only start processing at the given timestamp.",
+ NULL, NULL,
+ },
+ [OPT_COMPRESS] = {
+ "compress", "Compress idle periods",
+ "Compress idle periods which are longer than the specified number of timescale ticks.",
+ NULL, NULL,
+ },
+ [OPT_MAX] = ALL_ZERO,
};
static const struct sr_option *get_options(void)
{
if (!options[0].def) {
- options[0].def = g_variant_ref_sink(g_variant_new_int32(0));
- options[1].def = g_variant_ref_sink(g_variant_new_int32(-1));
- options[2].def = g_variant_ref_sink(g_variant_new_int32(1));
- options[3].def = g_variant_ref_sink(g_variant_new_int32(0));
+ options[OPT_NUM_CHANS].def = g_variant_ref_sink(g_variant_new_uint32(0));
+ options[OPT_DOWN_SAMPLE].def = g_variant_ref_sink(g_variant_new_uint64(1));
+ options[OPT_SKIP_COUNT].def = g_variant_ref_sink(g_variant_new_uint64(0));
+ options[OPT_COMPRESS].def = g_variant_ref_sink(g_variant_new_uint64(0));
}
return options;