X-Git-Url: http://sigrok.org/gitweb/?a=blobdiff_plain;f=src%2Fhardware%2Fasix-sigma%2Fprotocol.c;h=253e98a0aa5349c58a3babff447f3af1b20776db;hb=a9016883f800c40a1866c3f0d011cdb0c256888b;hp=db89d6890a9c2d9d1f214de5d0335f297719d5b5;hpb=9a0a606a8215aa7fd41bb72a3653dff7ef54505b;p=libsigrok.git diff --git a/src/hardware/asix-sigma/protocol.c b/src/hardware/asix-sigma/protocol.c index db89d689..253e98a0 100644 --- a/src/hardware/asix-sigma/protocol.c +++ b/src/hardware/asix-sigma/protocol.c @@ -26,12 +26,6 @@ #include #include "protocol.h" -#define USB_VENDOR 0xa600 -#define USB_PRODUCT 0xa000 -#define USB_DESCRIPTION "ASIX SIGMA" -#define USB_VENDOR_NAME "ASIX" -#define USB_MODEL_NAME "SIGMA" - /* * The ASIX Sigma supports arbitrary integer frequency divider in * the 50MHz mode. The divider is in range 1...256 , allowing for @@ -448,10 +442,18 @@ static int upload_firmware(struct sr_context *ctx, unsigned char *buf; unsigned char pins; size_t buf_size; - const char *firmware = sigma_firmware_files[firmware_idx]; - struct ftdi_context *ftdic = &devc->ftdic; + const char *firmware; + struct ftdi_context *ftdic; + + /* Avoid downloading the same firmware multiple times. */ + firmware = sigma_firmware_files[firmware_idx]; + if (devc->cur_firmware == firmware_idx) { + sr_info("Not uploading firmware file '%s' again.", firmware); + return SR_OK; + } /* Make sure it's an ASIX SIGMA. */ + ftdic = &devc->ftdic; ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL); if (ret < 0) { @@ -732,6 +734,73 @@ static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster) return (cluster->timestamp_hi << 8) | cluster->timestamp_lo; } +/* + * Return one 16bit data entity of a DRAM cluster at the specified index. + */ +static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx) +{ + uint16_t sample; + + sample = 0; + sample |= cl->samples[idx].sample_lo << 0; + sample |= cl->samples[idx].sample_hi << 8; + sample = (sample >> 8) | (sample << 8); + return sample; +} + +/* + * Deinterlace sample data that was retrieved at 100MHz samplerate. + * One 16bit item contains two samples of 8bits each. The bits of + * multiple samples are interleaved. + */ +static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx) +{ + uint16_t outdata; + + indata >>= idx; + outdata = 0; + outdata |= (indata >> (0 * 2 - 0)) & (1 << 0); + outdata |= (indata >> (1 * 2 - 1)) & (1 << 1); + outdata |= (indata >> (2 * 2 - 2)) & (1 << 2); + outdata |= (indata >> (3 * 2 - 3)) & (1 << 3); + outdata |= (indata >> (4 * 2 - 4)) & (1 << 4); + outdata |= (indata >> (5 * 2 - 5)) & (1 << 5); + outdata |= (indata >> (6 * 2 - 6)) & (1 << 6); + outdata |= (indata >> (7 * 2 - 7)) & (1 << 7); + return outdata; +} + +/* + * Deinterlace sample data that was retrieved at 200MHz samplerate. + * One 16bit item contains four samples of 4bits each. The bits of + * multiple samples are interleaved. + */ +static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx) +{ + uint16_t outdata; + + indata >>= idx; + outdata = 0; + outdata |= (indata >> (0 * 4 - 0)) & (1 << 0); + outdata |= (indata >> (1 * 4 - 1)) & (1 << 1); + outdata |= (indata >> (2 * 4 - 2)) & (1 << 2); + outdata |= (indata >> (3 * 4 - 3)) & (1 << 3); + return outdata; +} + +static void store_sr_sample(uint8_t *samples, int idx, uint16_t data) +{ + samples[2 * idx + 0] = (data >> 0) & 0xff; + samples[2 * idx + 1] = (data >> 8) & 0xff; +} + +/* + * This size translates to: event count (1K events per cluster), times + * the sample width (unitsize, 16bits per event), times the maximum + * number of samples per event. + */ +#define SAMPLES_BUFFER_SIZE (1024 * 2 * 4) + static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, unsigned int events_in_cluster, unsigned int triggered, @@ -741,9 +810,12 @@ static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, struct sigma_state *ss = &devc->state; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; - uint16_t tsdiff, ts; - uint8_t samples[2048]; + uint16_t tsdiff, ts, sample, item16; + uint8_t samples[SAMPLES_BUFFER_SIZE]; + uint8_t *send_ptr; + size_t send_count, trig_count; unsigned int i; + int j; ts = sigma_dram_cluster_ts(dram_cluster); tsdiff = ts - ss->lastts; @@ -767,30 +839,57 @@ static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, */ for (ts = 0; ts < tsdiff; ts++) { i = ts % 1024; - samples[2 * i + 0] = ss->lastsample & 0xff; - samples[2 * i + 1] = ss->lastsample >> 8; + store_sr_sample(samples, i, ss->lastsample); /* * If we have 1024 samples ready or we're at the * end of submitting the padding samples, submit - * the packet to Sigrok. + * the packet to Sigrok. Since constant data is + * sent, duplication of data for rates above 50MHz + * is simple. */ if ((i == 1023) || (ts == tsdiff - 1)) { logic.length = (i + 1) * logic.unitsize; - sr_session_send(sdi, &packet); + for (j = 0; j < devc->samples_per_event; j++) + sr_session_send(sdi, &packet); } } /* * Parse the samples in current cluster and prepare them - * to be submitted to Sigrok. + * to be submitted to Sigrok. Cope with memory layouts that + * vary with the samplerate. */ + send_ptr = &samples[0]; + send_count = 0; + sample = 0; for (i = 0; i < events_in_cluster; i++) { - samples[2 * i + 1] = dram_cluster->samples[i].sample_lo; - samples[2 * i + 0] = dram_cluster->samples[i].sample_hi; + item16 = sigma_dram_cluster_data(dram_cluster, i); + if (devc->cur_samplerate == SR_MHZ(200)) { + sample = sigma_deinterlace_200mhz_data(item16, 0); + store_sr_sample(samples, send_count++, sample); + sample = sigma_deinterlace_200mhz_data(item16, 1); + store_sr_sample(samples, send_count++, sample); + sample = sigma_deinterlace_200mhz_data(item16, 2); + store_sr_sample(samples, send_count++, sample); + sample = sigma_deinterlace_200mhz_data(item16, 3); + store_sr_sample(samples, send_count++, sample); + } else if (devc->cur_samplerate == SR_MHZ(100)) { + sample = sigma_deinterlace_100mhz_data(item16, 0); + store_sr_sample(samples, send_count++, sample); + sample = sigma_deinterlace_100mhz_data(item16, 1); + store_sr_sample(samples, send_count++, sample); + } else { + sample = item16; + store_sr_sample(samples, send_count++, sample); + } } - /* Send data up to trigger point (if triggered). */ + /* + * If a trigger position applies, then provide the datafeed with + * the first part of data up to that position, then send the + * trigger marker. + */ int trigger_offset = 0; if (triggered) { /* @@ -803,10 +902,12 @@ static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, ss->lastsample, &devc->trigger); if (trigger_offset > 0) { + trig_count = trigger_offset * devc->samples_per_event; packet.type = SR_DF_LOGIC; - logic.length = trigger_offset * logic.unitsize; + logic.length = trig_count * logic.unitsize; sr_session_send(sdi, &packet); - events_in_cluster -= trigger_offset; + send_ptr += trig_count * logic.unitsize; + send_count -= trig_count; } /* Only send trigger if explicitly enabled. */ @@ -816,17 +917,18 @@ static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, } } - if (events_in_cluster > 0) { + /* + * Send the data after the trigger, or all of the received data + * if no trigger position applies. + */ + if (send_count) { packet.type = SR_DF_LOGIC; - logic.length = events_in_cluster * logic.unitsize; - logic.data = samples + (trigger_offset * logic.unitsize); + logic.length = send_count * logic.unitsize; + logic.data = send_ptr; sr_session_send(sdi, &packet); } - ss->lastsample = - samples[2 * (events_in_cluster - 1) + 0] | - (samples[2 * (events_in_cluster - 1) + 1] << 8); - + ss->lastsample = sample; } /*