X-Git-Url: http://sigrok.org/gitweb/?a=blobdiff_plain;f=sainsmart_dds120.c;h=cd2de1afce023dc04ec95d4780d19e7de17dcaf9;hb=2c57c00b18c085fb72579470368bc18a5985ef37;hp=b964d1588eee6b0da8b2b894ac39ad12d77fb843;hpb=75ad0fa51ea581cbea1f1c0fb173856822c6e971;p=sigrok-firmware-fx2lafw.git diff --git a/sainsmart_dds120.c b/sainsmart_dds120.c index b964d158..cd2de1af 100644 --- a/sainsmart_dds120.c +++ b/sainsmart_dds120.c @@ -15,8 +15,7 @@ * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * License along with this library; if not, see . */ #include @@ -25,9 +24,33 @@ #include #include +#define SET_ANALOG_MODE() PA7 = 1 + +#define SET_COUPLING(x) set_coupling(x) + +#define SET_CALIBRATION_PULSE(x) set_calibration_pulse(x) + +/* Toggle the 1kHz calibration pin, only accurate up to ca. 8MHz. */ +/* Note: There's no PE2 as IOE is not bit-addressable (see TRM 15.2). */ +#define TOGGLE_CALIBRATION_PIN() IOE = IOE ^ 0x04 + +#define LED_CLEAR() NOP +#define LED_GREEN() NOP +#define LED_RED() NOP + +#define TIMER2_VAL 1000 + +/* CTLx pin index (IFCLK, ADC clock input). */ +#define CTL_BIT 2 + +#define OUT0 ((1 << CTL_BIT) << 4) /* OEx = 1, CTLx = 0 */ +#define OE_CTL (((1 << CTL_BIT) << 4) | (1 << CTL_BIT)) /* OEx = CTLx = 1 */ + /* Change to support as many interfaces as you need. */ static BYTE altiface = 0; +static volatile WORD ledcounter = 0; + static volatile __bit dosud = FALSE; static volatile __bit dosuspend = FALSE; @@ -65,13 +88,19 @@ void suspend_isr(void) __interrupt SUSPEND_ISR void timer2_isr(void) __interrupt TF2_ISR { - /* Toggle the 1kHz pin, only accurate up to ca 8MHz */ - IOE = IOE^0x04; + TOGGLE_CALIBRATION_PIN(); + + if (ledcounter && (--ledcounter == 0)) + LED_CLEAR(); + TF2 = 0; } /** - * The gain stage is 2 stage approach. -6dB and -20dB on the first stage (attentuator). The second stage is then doing the gain by 3 different resistor values switched into the feedback loop. + * The gain stage is 2 stage approach. -6dB and -20dB on the first stage + * (attentuator). The second stage is then doing the gain by 3 different + * resistor values switched into the feedback loop. + * * #Channel 0: * PC1=1; PC2=0; PC3= 0 -> Gain x0.1 = -20dB * PC1=1; PC2=0; PC3= 1 -> Gain x0.2 = -14dB @@ -79,6 +108,7 @@ void timer2_isr(void) __interrupt TF2_ISR * PC1=0; PC2=0; PC3= 0 -> Gain x0.5 = -6dB * PC1=0; PC2=0; PC3= 1 -> Gain x1 = 0dB * PC1=0; PC2=1; PC3= 0 -> Gain x2 = +6dB + * * #Channel 1: * PE1=1; PC4=0; PC5= 0 -> Gain x0.1 = -20dB * PE1=1; PC4=0; PC5= 1 -> Gain x0.2 = -14dB @@ -150,7 +180,6 @@ static BOOL set_voltage(BYTE channel, BYTE val) return TRUE; } - /** * Each LSB in the nibble of the byte controls the coupling per channel. * @@ -206,6 +235,8 @@ static void start_sampling(void) { int i; + SET_ANALOG_MODE(); + clear_fifo(); for (i = 0; i < 1000; i++); @@ -219,6 +250,9 @@ static void start_sampling(void) GPIFTCB0 = 0; GPIFTRIG = (altiface == 0) ? 6 : 4; + /* Set green LED, don't clear LED afterwards (ledcounter = 0). */ + LED_GREEN(); + ledcounter = 0; } static void select_interface(BYTE alt) @@ -258,16 +292,21 @@ static const struct samplerate_info { } samplerates[] = { { 48, 0x80, 0, 3, 0, 0x00, 0xea }, { 30, 0x80, 0, 3, 0, 0x00, 0xaa }, - { 24, 1, 0, 2, 1, 0x40, 0xea }, - { 16, 1, 1, 2, 0, 0x40, 0xea }, - { 12, 2, 1, 2, 0, 0x40, 0xea }, - { 8, 3, 2, 2, 0, 0x40, 0xea }, - { 4, 6, 5, 2, 0, 0x40, 0xea }, - { 2, 12, 11, 2, 0, 0x40, 0xea }, - { 1, 24, 23, 2, 0, 0x40, 0xea }, - { 50, 48, 47, 2, 0, 0x40, 0xea }, - { 20, 120, 119, 2, 0, 0x40, 0xea }, - { 10, 240, 239, 2, 0, 0x40, 0xea }, + { 24, 1, 0, 2, 1, OUT0, 0xea }, + { 16, 1, 1, 2, 0, OUT0, 0xea }, + { 15, 1, 0, 2, 1, OUT0, 0xaa }, + { 12, 2, 1, 2, 0, OUT0, 0xea }, + { 11, 1, 1, 2, 0, OUT0, 0xaa }, + { 8, 3, 2, 2, 0, OUT0, 0xea }, + { 6, 2, 2, 2, 0, OUT0, 0xaa }, + { 5, 3, 2, 2, 0, OUT0, 0xaa }, + { 4, 6, 5, 2, 0, OUT0, 0xea }, + { 3, 5, 4, 2, 0, OUT0, 0xaa }, + { 2, 12, 11, 2, 0, OUT0, 0xea }, + { 1, 24, 23, 2, 0, OUT0, 0xea }, + { 50, 48, 47, 2, 0, OUT0, 0xea }, + { 20, 120, 119, 2, 0, OUT0, 0xea }, + { 10, 240, 239, 2, 0, OUT0, 0xea }, }; static BOOL set_samplerate(BYTE rate) @@ -283,23 +322,26 @@ static BOOL set_samplerate(BYTE rate) IFCONFIG = samplerates[i].ifcfg; AUTOPTRSETUP = 7; - AUTOPTRH2 = 0xE4; + AUTOPTRH2 = 0xE4; /* 0xE400: GPIF waveform descriptor 0. */ AUTOPTRL2 = 0x00; /* * The program for low-speed, e.g. 1 MHz, is: - * wait 24, CTL2=0, FIFO - * wait 23, CTL2=1 - * jump 0, CTL2=1 + * wait 24, CTLx=0, FIFO + * wait 23, CTLx=1 + * jump 0, CTLx=1 * * The program for 24 MHz is: - * wait 1, CTL2=0, FIFO - * jump 0, CTL2=1 + * wait 1, CTLx=0, FIFO + * jump 0, CTLx=1 * * The program for 30/48 MHz is: - * jump 0, CTL2=Z, FIFO, LOOP + * jump 0, CTLx=Z, FIFO, LOOP + * + * (CTLx is device-dependent, could be e.g. CTL0 or CTL2.) */ + /* LENGTH / BRANCH 0-7 */ EXTAUTODAT2 = samplerates[i].wait0; EXTAUTODAT2 = samplerates[i].wait1; EXTAUTODAT2 = 1; @@ -309,24 +351,27 @@ static BOOL set_samplerate(BYTE rate) EXTAUTODAT2 = 0; EXTAUTODAT2 = 0; + /* OPCODE 0-7 */ EXTAUTODAT2 = samplerates[i].opc0; EXTAUTODAT2 = samplerates[i].opc1; - EXTAUTODAT2 = 1; + EXTAUTODAT2 = 1; /* DATA=0 DP=1 */ EXTAUTODAT2 = 0; EXTAUTODAT2 = 0; EXTAUTODAT2 = 0; EXTAUTODAT2 = 0; EXTAUTODAT2 = 0; + /* OUTPUT 0-7 */ EXTAUTODAT2 = samplerates[i].out0; - EXTAUTODAT2 = 0x44; - EXTAUTODAT2 = 0x44; - EXTAUTODAT2 = 0x00; - EXTAUTODAT2 = 0x00; - EXTAUTODAT2 = 0x00; - EXTAUTODAT2 = 0x00; - EXTAUTODAT2 = 0x00; + EXTAUTODAT2 = OE_CTL; + EXTAUTODAT2 = OE_CTL; + EXTAUTODAT2 = 0; + EXTAUTODAT2 = 0; + EXTAUTODAT2 = 0; + EXTAUTODAT2 = 0; + EXTAUTODAT2 = 0; + /* LOGIC FUNCTION 0-7 */ EXTAUTODAT2 = 0; EXTAUTODAT2 = 0; EXTAUTODAT2 = 0; @@ -342,6 +387,30 @@ static BOOL set_samplerate(BYTE rate) return TRUE; } +static BOOL set_calibration_pulse(BYTE fs) +{ + switch (fs) { + case 0: // 100Hz + RCAP2L = -10000 & 0xff; + RCAP2H = (-10000 & 0xff00) >> 8; + return TRUE; + case 1: // 1kHz + RCAP2L = -1000 & 0xff; + RCAP2H = (-1000 & 0xff00) >> 8; + return TRUE; + case 10: // 1kHz + RCAP2L = (BYTE)(-100 & 0xff); + RCAP2H = 0xff; + return TRUE; + case 50: // 50kHz + RCAP2L = (BYTE)(-20 & 0xff); + RCAP2H = 0xff; + return TRUE; + default: + return FALSE; + } +} + /* Set *alt_ifc to the current alt interface for ifc. */ BOOL handle_get_interface(BYTE ifc, BYTE *alt_ifc) { @@ -384,8 +453,12 @@ BOOL handle_vendorcommand(BYTE cmd) { stop_sampling(); + /* Set red LED, clear after timeout. */ + LED_RED(); + ledcounter = 1000; + /* Clear EP0BCH/L for each valid command. */ - if (cmd >= 0xe0 && cmd <= 0xe5) { + if (cmd >= 0xe0 && cmd <= 0xe6) { EP0BCH = 0; EP0BCL = 0; while (EP0CS & bmEPBUSY); @@ -407,7 +480,10 @@ BOOL handle_vendorcommand(BYTE cmd) set_numchannels(EP0BUF[0]); return TRUE; case 0xe5: - set_coupling(EP0BUF[0]); + SET_COUPLING(EP0BUF[0]); + return TRUE; + case 0xe6: + SET_CALIBRATION_PULSE(EP0BUF[0]); return TRUE; } @@ -419,9 +495,11 @@ static void init(void) EP4CFG = 0; EP8CFG = 0; + SET_ANALOG_MODE(); + /* In idle mode tristate all outputs. */ - GPIFIDLECTL = 0x00; - GPIFCTLCFG = 0x80; + GPIFIDLECTL = 0x00; /* Don't enable CTL0-5 outputs. */ + GPIFCTLCFG = 0x80; /* TRICTL=1. CTL0-2: CMOS outputs, tri-statable. */ GPIFWFSELECT = 0x00; GPIFREADYSTAT = 0x00; @@ -454,22 +532,22 @@ static void main(void) EA = 1; /* Init timer2. */ - RCAP2L = -1000 & 0xff; - RCAP2H = (-1000 >> 8) & 0xff; + RCAP2L = -TIMER2_VAL & 0xff; + RCAP2H = (-TIMER2_VAL & 0xff00) >> 8; T2CON = 0; ET2 = 1; TR2 = 1; RENUMERATE_UNCOND(); + PORTECFG = 0; PORTCCFG = 0; PORTACFG = 0; - PORTECFG = 0; - OEE = 0xFF; + OEE = 0xff; OEC = 0xff; - OEA = 0x80; + OEA = 0xff; - PA7 = 1; + SET_ANALOG_MODE(); while (TRUE) { if (dosud) { @@ -481,7 +559,7 @@ static void main(void) dosuspend = FALSE; do { /* Make sure ext wakeups are cleared. */ - WAKEUPCS |= bmWU|bmWU2; + WAKEUPCS |= bmWU | bmWU2; SUSPEND = 1; PCON |= 1; __asm