X-Git-Url: http://sigrok.org/gitweb/?a=blobdiff_plain;f=hardware%2Fasix-sigma%2Fasix-sigma.c;h=bfd69484bf8b944e8db564bc82ccab03cdb33d93;hb=43cd4637285833706f8a404ca027bcf0ee75b9ae;hp=d32e91287e24447f89def9e6cb1c0d8887072b58;hpb=56d0d24535700fb53e47a25ad5c73d34697695fa;p=libsigrok.git diff --git a/hardware/asix-sigma/asix-sigma.c b/hardware/asix-sigma/asix-sigma.c index d32e9128..bfd69484 100644 --- a/hardware/asix-sigma/asix-sigma.c +++ b/hardware/asix-sigma/asix-sigma.c @@ -27,6 +27,7 @@ #include #include #include +#include #include "libsigrok.h" #include "libsigrok-internal.h" #include "asix-sigma.h" @@ -36,25 +37,28 @@ #define USB_DESCRIPTION "ASIX SIGMA" #define USB_VENDOR_NAME "ASIX" #define USB_MODEL_NAME "SIGMA" -#define USB_MODEL_VERSION "" -#define TRIGGER_TYPE "rf10" -#define NUM_PROBES 16 SR_PRIV struct sr_dev_driver asix_sigma_driver_info; static struct sr_dev_driver *di = &asix_sigma_driver_info; static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data); +/* + * The ASIX Sigma supports arbitrary integer frequency divider in + * the 50MHz mode. The divider is in range 1...256 , allowing for + * very precise sampling rate selection. This driver supports only + * a subset of the sampling rates. + */ static const uint64_t samplerates[] = { - SR_KHZ(200), - SR_KHZ(250), - SR_KHZ(500), - SR_MHZ(1), - SR_MHZ(5), - SR_MHZ(10), - SR_MHZ(25), - SR_MHZ(50), - SR_MHZ(100), - SR_MHZ(200), + SR_KHZ(200), /* div=250 */ + SR_KHZ(250), /* div=200 */ + SR_KHZ(500), /* div=100 */ + SR_MHZ(1), /* div=50 */ + SR_MHZ(5), /* div=10 */ + SR_MHZ(10), /* div=5 */ + SR_MHZ(25), /* div=2 */ + SR_MHZ(50), /* div=1 */ + SR_MHZ(100), /* Special FW needed */ + SR_MHZ(200), /* Special FW needed */ }; /* @@ -62,41 +66,37 @@ static const uint64_t samplerates[] = { * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg * (the cable has two additional GND pins, and a TI and TO pin) */ -static const char *channel_names[NUM_PROBES + 1] = { +static const char *channel_names[] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", - NULL, }; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_SAMPLERATE, + SR_CONF_TRIGGER_MATCH, SR_CONF_CAPTURE_RATIO, SR_CONF_LIMIT_MSEC, }; -/* Force the FPGA to reboot. */ -static uint8_t suicide[] = { - 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84, +static const int32_t trigger_matches[] = { + SR_TRIGGER_ZERO, + SR_TRIGGER_ONE, + SR_TRIGGER_RISING, + SR_TRIGGER_FALLING, }; -/* Prepare to upload firmware (FPGA specific). */ -static uint8_t init_array[] = { - 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, -}; - -/* Initialize the logic analyzer mode. */ -static uint8_t logic_mode_start[] = { - 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40, - 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38, -}; - -static const char *firmware_files[] = { - "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */ - "asix-sigma-100.fw", /* 100 MHz */ - "asix-sigma-200.fw", /* 200 MHz */ - "asix-sigma-50sync.fw", /* Synchronous clock from pin */ - "asix-sigma-phasor.fw", /* Frequency counter */ +static const char *sigma_firmware_files[] = { + /* 50 MHz, supports 8 bit fractions */ + FIRMWARE_DIR "/asix-sigma-50.fw", + /* 100 MHz */ + FIRMWARE_DIR "/asix-sigma-100.fw", + /* 200 MHz */ + FIRMWARE_DIR "/asix-sigma-200.fw", + /* Synchronous clock from pin */ + FIRMWARE_DIR "/asix-sigma-50sync.fw", + /* Frequency counter */ + FIRMWARE_DIR "/asix-sigma-phasor.fw", }; static int sigma_read(void *buf, size_t size, struct dev_context *devc) @@ -299,87 +299,6 @@ static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *d return SR_OK; } -/* Generate the bitbang stream for programming the FPGA. */ -static int bin2bitbang(const char *filename, - unsigned char **buf, size_t *buf_size) -{ - FILE *f; - unsigned long file_size; - unsigned long offset = 0; - unsigned char *p; - uint8_t *firmware; - unsigned long fwsize = 0; - const int buffer_size = 65536; - size_t i; - int c, bit, v; - uint32_t imm = 0x3f6df2ab; - - f = g_fopen(filename, "rb"); - if (!f) { - sr_err("g_fopen(\"%s\", \"rb\")", filename); - return SR_ERR; - } - - if (-1 == fseek(f, 0, SEEK_END)) { - sr_err("fseek on %s failed", filename); - fclose(f); - return SR_ERR; - } - - file_size = ftell(f); - - fseek(f, 0, SEEK_SET); - - if (!(firmware = g_try_malloc(buffer_size))) { - sr_err("%s: firmware malloc failed", __func__); - fclose(f); - return SR_ERR_MALLOC; - } - - while ((c = getc(f)) != EOF) { - imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); - firmware[fwsize++] = c ^ imm; - } - fclose(f); - - if(fwsize != file_size) { - sr_err("%s: Error reading firmware", filename); - fclose(f); - g_free(firmware); - return SR_ERR; - } - - *buf_size = fwsize * 2 * 8; - - *buf = p = (unsigned char *)g_try_malloc(*buf_size); - if (!p) { - sr_err("%s: buf/p malloc failed", __func__); - g_free(firmware); - return SR_ERR_MALLOC; - } - - for (i = 0; i < fwsize; ++i) { - for (bit = 7; bit >= 0; --bit) { - v = firmware[i] & 1 << bit ? 0x40 : 0x00; - p[offset++] = v | 0x01; - p[offset++] = v; - } - } - - g_free(firmware); - - if (offset != *buf_size) { - g_free(*buf); - sr_err("Error reading firmware %s " - "offset=%ld, file_size=%ld, buf_size=%zd.", - filename, offset, file_size, *buf_size); - - return SR_ERR; - } - - return SR_OK; -} - static void clear_helper(void *priv) { struct dev_context *devc; @@ -409,7 +328,8 @@ static GSList *scan(GSList *options) struct ftdi_device_list *devlist; char serial_txt[10]; uint32_t serial; - int ret, i; + int ret; + unsigned int i; (void)options; @@ -446,7 +366,7 @@ static GSList *scan(GSList *options) sr_info("Found ASIX SIGMA - Serial: %s", serial_txt); - devc->cur_samplerate = 0; + devc->cur_samplerate = samplerates[0]; devc->period_ps = 0; devc->limit_msec = 0; devc->cur_firmware = -1; @@ -457,15 +377,16 @@ static GSList *scan(GSList *options) /* Register SIGMA device. */ if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME, - USB_MODEL_NAME, USB_MODEL_VERSION))) { + USB_MODEL_NAME, NULL))) { sr_err("%s: sdi was NULL", __func__); goto free; } sdi->driver = di; - for (i = 0; channel_names[i]; i++) { - if (!(ch = sr_channel_new(i, SR_PROBE_LOGIC, TRUE, - channel_names[i]))) + for (i = 0; i < ARRAY_SIZE(channel_names); i++) { + ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE, + channel_names[i]); + if (!ch) return NULL; sdi->channels = g_slist_append(sdi->channels, ch); } @@ -490,92 +411,235 @@ static GSList *dev_list(void) return ((struct drv_context *)(di->priv))->instances; } +/* + * Configure the FPGA for bitbang mode. + * This sequence is documented in section 2. of the ASIX Sigma programming + * manual. This sequence is necessary to configure the FPGA in the Sigma + * into Bitbang mode, in which it can be programmed with the firmware. + */ +static int sigma_fpga_init_bitbang(struct dev_context *devc) +{ + uint8_t suicide[] = { + 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84, + }; + uint8_t init_array[] = { + 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x01, 0x01, + }; + int i, ret, timeout = 10000; + uint8_t data; + + /* Section 2. part 1), do the FPGA suicide. */ + sigma_write(suicide, sizeof(suicide), devc); + sigma_write(suicide, sizeof(suicide), devc); + sigma_write(suicide, sizeof(suicide), devc); + sigma_write(suicide, sizeof(suicide), devc); + + /* Section 2. part 2), do pulse on D1. */ + sigma_write(init_array, sizeof(init_array), devc); + ftdi_usb_purge_buffers(&devc->ftdic); + + /* Wait until the FPGA asserts D6/INIT_B. */ + for (i = 0; i < timeout; i++) { + ret = sigma_read(&data, 1, devc); + if (ret < 0) + return ret; + /* Test if pin D6 got asserted. */ + if (data & (1 << 5)) + return 0; + /* The D6 was not asserted yet, wait a bit. */ + usleep(10000); + } + + return SR_ERR_TIMEOUT; +} + +/* + * Configure the FPGA for logic-analyzer mode. + */ +static int sigma_fpga_init_la(struct dev_context *devc) +{ + /* Initialize the logic analyzer mode. */ + uint8_t logic_mode_start[] = { + REG_ADDR_LOW | (READ_ID & 0xf), + REG_ADDR_HIGH | (READ_ID >> 8), + REG_READ_ADDR, /* Read ID register. */ + + REG_ADDR_LOW | (WRITE_TEST & 0xf), + REG_DATA_LOW | 0x5, + REG_DATA_HIGH_WRITE | 0x5, + REG_READ_ADDR, /* Read scratch register. */ + + REG_DATA_LOW | 0xa, + REG_DATA_HIGH_WRITE | 0xa, + REG_READ_ADDR, /* Read scratch register. */ + + REG_ADDR_LOW | (WRITE_MODE & 0xf), + REG_DATA_LOW | 0x0, + REG_DATA_HIGH_WRITE | 0x8, + }; + + uint8_t result[3]; + int ret; + + /* Initialize the logic analyzer mode. */ + sigma_write(logic_mode_start, sizeof(logic_mode_start), devc); + + /* Expect a 3 byte reply since we issued three READ requests. */ + ret = sigma_read(result, 3, devc); + if (ret != 3) + goto err; + + if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) + goto err; + + return SR_OK; +err: + sr_err("Configuration failed. Invalid reply received."); + return SR_ERR; +} + +/* + * Read the firmware from a file and transform it into a series of bitbang + * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d + * by the caller of this function. + */ +static int sigma_fw_2_bitbang(const char *filename, + uint8_t **bb_cmd, gsize *bb_cmd_size) +{ + GMappedFile *file; + GError *error; + gsize i, file_size, bb_size; + gchar *firmware; + uint8_t *bb_stream, *bbs; + uint32_t imm; + int bit, v; + int ret = SR_OK; + + /* + * Map the file and make the mapped buffer writable. + * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped + * will be modified. It will not be modified until someone uses + * g_file_set_contents() on it. + */ + error = NULL; + file = g_mapped_file_new(filename, TRUE, &error); + g_assert_no_error(error); + + file_size = g_mapped_file_get_length(file); + firmware = g_mapped_file_get_contents(file); + g_assert(firmware); + + /* Weird magic transformation below, I have no idea what it does. */ + imm = 0x3f6df2ab; + for (i = 0; i < file_size; i++) { + imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); + firmware[i] ^= imm & 0xff; + } + + /* + * Now that the firmware is "transformed", we will transcribe the + * firmware blob into a sequence of toggles of the Dx wires. This + * sequence will be fed directly into the Sigma, which must be in + * the FPGA bitbang programming mode. + */ + + /* Each bit of firmware is transcribed as two toggles of Dx wires. */ + bb_size = file_size * 8 * 2; + bb_stream = (uint8_t *)g_try_malloc(bb_size); + if (!bb_stream) { + sr_err("%s: Failed to allocate bitbang stream", __func__); + ret = SR_ERR_MALLOC; + goto exit; + } + + bbs = bb_stream; + for (i = 0; i < file_size; i++) { + for (bit = 7; bit >= 0; bit--) { + v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00; + *bbs++ = v | 0x01; + *bbs++ = v; + } + } + + /* The transformation completed successfully, return the result. */ + *bb_cmd = bb_stream; + *bb_cmd_size = bb_size; + +exit: + g_mapped_file_unref(file); + return ret; +} + static int upload_firmware(int firmware_idx, struct dev_context *devc) { int ret; unsigned char *buf; unsigned char pins; size_t buf_size; - unsigned char result[32]; - char firmware_path[128]; + const char *firmware = sigma_firmware_files[firmware_idx]; + struct ftdi_context *ftdic = &devc->ftdic; /* Make sure it's an ASIX SIGMA. */ - if ((ret = ftdi_usb_open_desc(&devc->ftdic, - USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { + ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT, + USB_DESCRIPTION, NULL); + if (ret < 0) { sr_err("ftdi_usb_open failed: %s", - ftdi_get_error_string(&devc->ftdic)); + ftdi_get_error_string(ftdic)); return 0; } - if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) { + ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG); + if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", - ftdi_get_error_string(&devc->ftdic)); + ftdi_get_error_string(ftdic)); return 0; } /* Four times the speed of sigmalogan - Works well. */ - if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) { + ret = ftdi_set_baudrate(ftdic, 750000); + if (ret < 0) { sr_err("ftdi_set_baudrate failed: %s", - ftdi_get_error_string(&devc->ftdic)); + ftdi_get_error_string(ftdic)); return 0; } - /* Force the FPGA to reboot. */ - sigma_write(suicide, sizeof(suicide), devc); - sigma_write(suicide, sizeof(suicide), devc); - sigma_write(suicide, sizeof(suicide), devc); - sigma_write(suicide, sizeof(suicide), devc); - - /* Prepare to upload firmware (FPGA specific). */ - sigma_write(init_array, sizeof(init_array), devc); - - ftdi_usb_purge_buffers(&devc->ftdic); - - /* Wait until the FPGA asserts INIT_B. */ - while (1) { - ret = sigma_read(result, 1, devc); - if (result[0] & 0x20) - break; - } + /* Initialize the FPGA for firmware upload. */ + ret = sigma_fpga_init_bitbang(devc); + if (ret) + return ret; /* Prepare firmware. */ - snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR, - firmware_files[firmware_idx]); - - if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) { + ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size); + if (ret != SR_OK) { sr_err("An error occured while reading the firmware: %s", - firmware_path); + firmware); return ret; } /* Upload firmare. */ - sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]); + sr_info("Uploading firmware file '%s'.", firmware); sigma_write(buf, buf_size, devc); g_free(buf); - if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) { + ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET); + if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", - ftdi_get_error_string(&devc->ftdic)); + ftdi_get_error_string(ftdic)); return SR_ERR; } - ftdi_usb_purge_buffers(&devc->ftdic); + ftdi_usb_purge_buffers(ftdic); /* Discard garbage. */ - while (1 == sigma_read(&pins, 1, devc)) + while (sigma_read(&pins, 1, devc) == 1) ; - /* Initialize the logic analyzer mode. */ - sigma_write(logic_mode_start, sizeof(logic_mode_start), devc); - - /* Expect a 3 byte reply. */ - ret = sigma_read(result, 3, devc); - if (ret != 3 || - result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) { - sr_err("Configuration failed. Invalid reply received."); - return SR_ERR; - } + /* Initialize the FPGA for logic-analyzer mode. */ + ret = sigma_fpga_init_la(devc); + if (ret != SR_OK) + return ret; devc->cur_firmware = firmware_idx; @@ -625,20 +689,20 @@ static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) if (samplerate <= SR_MHZ(50)) { ret = upload_firmware(0, devc); devc->num_channels = 16; - } - if (samplerate == SR_MHZ(100)) { + } else if (samplerate == SR_MHZ(100)) { ret = upload_firmware(1, devc); devc->num_channels = 8; - } - else if (samplerate == SR_MHZ(200)) { + } else if (samplerate == SR_MHZ(200)) { ret = upload_firmware(2, devc); devc->num_channels = 4; } - devc->cur_samplerate = samplerate; - devc->period_ps = 1000000000000ULL / samplerate; - devc->samples_per_event = 16 / devc->num_channels; - devc->state.state = SIGMA_IDLE; + if (ret == SR_OK) { + devc->cur_samplerate = samplerate; + devc->period_ps = 1000000000000ULL / samplerate; + devc->samples_per_event = 16 / devc->num_channels; + devc->state.state = SIGMA_IDLE; + } return ret; } @@ -651,76 +715,81 @@ static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) * The Sigma supports complex triggers using boolean expressions, but this * has not been implemented yet. */ -static int configure_channels(const struct sr_dev_inst *sdi) +static int convert_trigger(const struct sr_dev_inst *sdi) { - struct dev_context *devc = sdi->priv; - const struct sr_channel *ch; - const GSList *l; - int trigger_set = 0; - int channelbit; + struct dev_context *devc; + struct sr_trigger *trigger; + struct sr_trigger_stage *stage; + struct sr_trigger_match *match; + const GSList *l, *m; + int channelbit, trigger_set; + devc = sdi->priv; memset(&devc->trigger, 0, sizeof(struct sigma_trigger)); + if (!(trigger = sr_session_trigger_get(sdi->session))) + return SR_OK; + + trigger_set = 0; + for (l = trigger->stages; l; l = l->next) { + stage = l->data; + for (m = stage->matches; m; m = m->next) { + match = m->data; + if (!match->channel->enabled) + /* Ignore disabled channels with a trigger. */ + continue; + channelbit = 1 << (match->channel->index); + if (devc->cur_samplerate >= SR_MHZ(100)) { + /* Fast trigger support. */ + if (trigger_set) { + sr_err("Only a single pin trigger is " + "supported in 100 and 200MHz mode."); + return SR_ERR; + } + if (match->match == SR_TRIGGER_FALLING) + devc->trigger.fallingmask |= channelbit; + else if (match->match == SR_TRIGGER_RISING) + devc->trigger.risingmask |= channelbit; + else { + sr_err("Only rising/falling trigger is " + "supported in 100 and 200MHz mode."); + return SR_ERR; + } - for (l = sdi->channels; l; l = l->next) { - ch = (struct sr_channel *)l->data; - channelbit = 1 << (ch->index); - - if (!ch->enabled || !ch->trigger) - continue; - - if (devc->cur_samplerate >= SR_MHZ(100)) { - /* Fast trigger support. */ - if (trigger_set) { - sr_err("Only a single pin trigger in 100 and " - "200MHz mode is supported."); - return SR_ERR; - } - if (ch->trigger[0] == 'f') - devc->trigger.fallingmask |= channelbit; - else if (ch->trigger[0] == 'r') - devc->trigger.risingmask |= channelbit; - else { - sr_err("Only rising/falling trigger in 100 " - "and 200MHz mode is supported."); - return SR_ERR; - } - - ++trigger_set; - } else { - /* Simple trigger support (event). */ - if (ch->trigger[0] == '1') { - devc->trigger.simplevalue |= channelbit; - devc->trigger.simplemask |= channelbit; - } - else if (ch->trigger[0] == '0') { - devc->trigger.simplevalue &= ~channelbit; - devc->trigger.simplemask |= channelbit; - } - else if (ch->trigger[0] == 'f') { - devc->trigger.fallingmask |= channelbit; ++trigger_set; - } - else if (ch->trigger[0] == 'r') { - devc->trigger.risingmask |= channelbit; - ++trigger_set; - } - - /* - * Actually, Sigma supports 2 rising/falling triggers, - * but they are ORed and the current trigger syntax - * does not permit ORed triggers. - */ - if (trigger_set > 1) { - sr_err("Only 1 rising/falling trigger " - "is supported."); - return SR_ERR; + } else { + /* Simple trigger support (event). */ + if (match->match == SR_TRIGGER_ONE) { + devc->trigger.simplevalue |= channelbit; + devc->trigger.simplemask |= channelbit; + } + else if (match->match == SR_TRIGGER_ZERO) { + devc->trigger.simplevalue &= ~channelbit; + devc->trigger.simplemask |= channelbit; + } + else if (match->match == SR_TRIGGER_FALLING) { + devc->trigger.fallingmask |= channelbit; + ++trigger_set; + } + else if (match->match == SR_TRIGGER_RISING) { + devc->trigger.risingmask |= channelbit; + ++trigger_set; + } + + /* + * Actually, Sigma supports 2 rising/falling triggers, + * but they are ORed and the current trigger syntax + * does not permit ORed triggers. + */ + if (trigger_set > 1) { + sr_err("Only 1 rising/falling trigger " + "is supported."); + return SR_ERR; + } } } - - if (trigger_set) - devc->use_triggers = 1; } + return SR_OK; } @@ -751,13 +820,19 @@ static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, (void)cg; + if (!sdi) + return SR_ERR; + devc = sdi->priv; + switch (id) { case SR_CONF_SAMPLERATE: - if (sdi) { - devc = sdi->priv; - *data = g_variant_new_uint64(devc->cur_samplerate); - } else - return SR_ERR; + *data = g_variant_new_uint64(devc->cur_samplerate); + break; + case SR_CONF_LIMIT_MSEC: + *data = g_variant_new_uint64(devc->limit_msec); + break; + case SR_CONF_CAPTURE_RATIO: + *data = g_variant_new_uint64(devc->capture_ratio); break; default: return SR_ERR_NA; @@ -770,6 +845,7 @@ static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; + uint64_t tmp; int ret; (void)cg; @@ -779,21 +855,30 @@ static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi, devc = sdi->priv; - if (id == SR_CONF_SAMPLERATE) { + ret = SR_OK; + switch (id) { + case SR_CONF_SAMPLERATE: ret = set_samplerate(sdi, g_variant_get_uint64(data)); - } else if (id == SR_CONF_LIMIT_MSEC) { - devc->limit_msec = g_variant_get_uint64(data); - if (devc->limit_msec > 0) - ret = SR_OK; + break; + case SR_CONF_LIMIT_MSEC: + tmp = g_variant_get_uint64(data); + if (tmp > 0) + devc->limit_msec = g_variant_get_uint64(data); else ret = SR_ERR; - } else if (id == SR_CONF_CAPTURE_RATIO) { - devc->capture_ratio = g_variant_get_uint64(data); - if (devc->capture_ratio < 0 || devc->capture_ratio > 100) - ret = SR_ERR; + break; + case SR_CONF_LIMIT_SAMPLES: + tmp = g_variant_get_uint64(data); + devc->limit_msec = tmp * 1000 / devc->cur_samplerate; + break; + case SR_CONF_CAPTURE_RATIO: + tmp = g_variant_get_uint64(data); + if (tmp <= 100) + devc->capture_ratio = tmp; else - ret = SR_OK; - } else { + ret = SR_ERR; + break; + default: ret = SR_ERR_NA; } @@ -821,8 +906,10 @@ static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; - case SR_CONF_TRIGGER_TYPE: - *data = g_variant_new_string(TRIGGER_TYPE); + case SR_CONF_TRIGGER_MATCH: + *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, + trigger_matches, ARRAY_SIZE(trigger_matches), + sizeof(int32_t)); break; default: return SR_ERR_NA; @@ -832,27 +919,29 @@ static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, } /* Software trigger to determine exact trigger position. */ -static int get_trigger_offset(uint16_t *samples, uint16_t last_sample, +static int get_trigger_offset(uint8_t *samples, uint16_t last_sample, struct sigma_trigger *t) { int i; + uint16_t sample = 0; for (i = 0; i < 8; ++i) { if (i > 0) - last_sample = samples[i-1]; + last_sample = sample; + sample = samples[2 * i] | (samples[2 * i + 1] << 8); /* Simple triggers. */ - if ((samples[i] & t->simplemask) != t->simplevalue) + if ((sample & t->simplemask) != t->simplevalue) continue; /* Rising edge. */ - if ((last_sample & t->risingmask) != 0 || (samples[i] & - t->risingmask) != t->risingmask) + if (((last_sample & t->risingmask) != 0) || + ((sample & t->risingmask) != t->risingmask)) continue; /* Falling edge. */ if ((last_sample & t->fallingmask) != t->fallingmask || - (samples[i] & t->fallingmask) != 0) + (sample & t->fallingmask) != 0) continue; break; @@ -862,235 +951,304 @@ static int get_trigger_offset(uint16_t *samples, uint16_t last_sample, return i & 0x7; } + /* - * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. - * Each event is 20ns apart, and can contain multiple samples. - * - * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart. - * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart. - * For 50 MHz and below, events contain one sample for each channel, - * spread 20 ns apart. + * Return the timestamp of "DRAM cluster". */ -static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts, - uint16_t *lastsample, int triggerpos, - uint16_t limit_chunk, void *cb_data) +static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster) +{ + return (cluster->timestamp_hi << 8) | cluster->timestamp_lo; +} + +static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, + unsigned int events_in_cluster, + unsigned int triggered, + struct sr_dev_inst *sdi) { - struct sr_dev_inst *sdi = cb_data; struct dev_context *devc = sdi->priv; - uint16_t tsdiff, ts; - uint16_t samples[65536 * devc->samples_per_event]; + struct sigma_state *ss = &devc->state; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; - int i, j, k, l, numpad, tosend; - size_t n = 0, sent = 0; - int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event; - uint16_t *event; - uint16_t cur_sample; - int triggerts = -1; - - /* Check if trigger is in this chunk. */ - if (triggerpos != -1) { - if (devc->cur_samplerate <= SR_MHZ(50)) - triggerpos -= EVENTS_PER_CLUSTER - 1; + uint16_t tsdiff, ts; + uint8_t samples[2048]; + unsigned int i; - if (triggerpos < 0) - triggerpos = 0; + ts = sigma_dram_cluster_ts(dram_cluster); + tsdiff = ts - ss->lastts; + ss->lastts = ts; + + packet.type = SR_DF_LOGIC; + packet.payload = &logic; + logic.unitsize = 2; + logic.data = samples; + + /* + * First of all, send Sigrok a copy of the last sample from + * previous cluster as many times as needed to make up for + * the differential characteristics of data we get from the + * Sigma. Sigrok needs one sample of data per period. + * + * One DRAM cluster contains a timestamp and seven samples, + * the units of timestamp are "devc->period_ps" , the first + * sample in the cluster happens at the time of the timestamp + * and the remaining samples happen at timestamp +1...+6 . + */ + for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) { + i = ts % 1024; + samples[2 * i + 0] = ss->lastsample & 0xff; + samples[2 * i + 1] = ss->lastsample >> 8; - /* Find in which cluster the trigger occured. */ - triggerts = triggerpos / 7; + /* + * If we have 1024 samples ready or we're at the + * end of submitting the padding samples, submit + * the packet to Sigrok. + */ + if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) { + logic.length = (i + 1) * logic.unitsize; + sr_session_send(sdi, &packet); + } } - /* For each ts. */ - for (i = 0; i < 64; ++i) { - ts = *(uint16_t *) &buf[i * 16]; - tsdiff = ts - *lastts; - *lastts = ts; - - /* Decode partial chunk. */ - if (limit_chunk && ts > limit_chunk) - return SR_OK; - - /* Pad last sample up to current point. */ - numpad = tsdiff * devc->samples_per_event - clustersize; - if (numpad > 0) { - for (j = 0; j < numpad; ++j) - samples[j] = *lastsample; - - n = numpad; - } + /* + * Parse the samples in current cluster and prepare them + * to be submitted to Sigrok. + */ + for (i = 0; i < events_in_cluster; i++) { + samples[2 * i + 1] = dram_cluster->samples[i].sample_lo; + samples[2 * i + 0] = dram_cluster->samples[i].sample_hi; + } - /* Send samples between previous and this timestamp to sigrok. */ - sent = 0; - while (sent < n) { - tosend = MIN(2048, n - sent); + /* Send data up to trigger point (if triggered). */ + int trigger_offset = 0; + if (triggered) { + /* + * Trigger is not always accurate to sample because of + * pipeline delay. However, it always triggers before + * the actual event. We therefore look at the next + * samples to pinpoint the exact position of the trigger. + */ + trigger_offset = get_trigger_offset(samples, + ss->lastsample, &devc->trigger); + if (trigger_offset > 0) { packet.type = SR_DF_LOGIC; - packet.payload = &logic; - logic.length = tosend * sizeof(uint16_t); - logic.unitsize = 2; - logic.data = samples + sent; - sr_session_send(devc->cb_data, &packet); + logic.length = trigger_offset * logic.unitsize; + sr_session_send(sdi, &packet); + events_in_cluster -= trigger_offset; + } - sent += tosend; + /* Only send trigger if explicitly enabled. */ + if (devc->use_triggers) { + packet.type = SR_DF_TRIGGER; + sr_session_send(sdi, &packet); } - n = 0; + } - event = (uint16_t *) &buf[i * 16 + 2]; - cur_sample = 0; + if (events_in_cluster > 0) { + packet.type = SR_DF_LOGIC; + logic.length = events_in_cluster * logic.unitsize; + logic.data = samples + (trigger_offset * logic.unitsize); + sr_session_send(sdi, &packet); + } - /* For each event in cluster. */ - for (j = 0; j < 7; ++j) { + ss->lastsample = + samples[2 * (events_in_cluster - 1) + 0] | + (samples[2 * (events_in_cluster - 1) + 1] << 8); - /* For each sample in event. */ - for (k = 0; k < devc->samples_per_event; ++k) { - cur_sample = 0; +} - /* For each channel. */ - for (l = 0; l < devc->num_channels; ++l) - cur_sample |= (!!(event[j] & (1 << (l * - devc->samples_per_event + k)))) << l; +/* + * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. + * Each event is 20ns apart, and can contain multiple samples. + * + * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart. + * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart. + * For 50 MHz and below, events contain one sample for each channel, + * spread 20 ns apart. + */ +static int decode_chunk_ts(struct sigma_dram_line *dram_line, + uint16_t events_in_line, + uint32_t trigger_event, + struct sr_dev_inst *sdi) +{ + struct sigma_dram_cluster *dram_cluster; + struct dev_context *devc = sdi->priv; + unsigned int clusters_in_line = + (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER; + unsigned int events_in_cluster; + unsigned int i; + uint32_t trigger_cluster = ~0, triggered = 0; - samples[n++] = cur_sample; - } + /* Check if trigger is in this chunk. */ + if (trigger_event < (64 * 7)) { + if (devc->cur_samplerate <= SR_MHZ(50)) { + trigger_event -= MIN(EVENTS_PER_CLUSTER - 1, + trigger_event); } - /* Send data up to trigger point (if triggered). */ - sent = 0; - if (i == triggerts) { - /* - * Trigger is not always accurate to sample because of - * pipeline delay. However, it always triggers before - * the actual event. We therefore look at the next - * samples to pinpoint the exact position of the trigger. - */ - tosend = get_trigger_offset(samples, *lastsample, - &devc->trigger); - - if (tosend > 0) { - packet.type = SR_DF_LOGIC; - packet.payload = &logic; - logic.length = tosend * sizeof(uint16_t); - logic.unitsize = 2; - logic.data = samples; - sr_session_send(devc->cb_data, &packet); - - sent += tosend; - } - - /* Only send trigger if explicitly enabled. */ - if (devc->use_triggers) { - packet.type = SR_DF_TRIGGER; - sr_session_send(devc->cb_data, &packet); - } - } + /* Find in which cluster the trigger occured. */ + trigger_cluster = trigger_event / EVENTS_PER_CLUSTER; + } - /* Send rest of the chunk to sigrok. */ - tosend = n - sent; + /* For each full DRAM cluster. */ + for (i = 0; i < clusters_in_line; i++) { + dram_cluster = &dram_line->cluster[i]; - if (tosend > 0) { - packet.type = SR_DF_LOGIC; - packet.payload = &logic; - logic.length = tosend * sizeof(uint16_t); - logic.unitsize = 2; - logic.data = samples + sent; - sr_session_send(devc->cb_data, &packet); + /* The last cluster might not be full. */ + if ((i == clusters_in_line - 1) && + (events_in_line % EVENTS_PER_CLUSTER)) { + events_in_cluster = events_in_line % EVENTS_PER_CLUSTER; + } else { + events_in_cluster = EVENTS_PER_CLUSTER; } - *lastsample = samples[n - 1]; + triggered = (i == trigger_cluster); + sigma_decode_dram_cluster(dram_cluster, events_in_cluster, + triggered, sdi); } return SR_OK; } -static int receive_data(int fd, int revents, void *cb_data) +static int download_capture(struct sr_dev_inst *sdi) { - struct sr_dev_inst *sdi = cb_data; struct dev_context *devc = sdi->priv; + const uint32_t chunks_per_read = 32; + struct sigma_dram_line *dram_line; + int bufsz; + uint32_t stoppos, triggerpos; struct sr_datafeed_packet packet; - const int chunks_per_read = 32; - unsigned char buf[chunks_per_read * CHUNK_SIZE]; - int bufsz, numchunks, i, newchunks; - uint64_t running_msec; - struct timeval tv; + uint8_t modestatus; - (void)fd; - (void)revents; + uint32_t i; + uint32_t dl_lines_total, dl_lines_curr, dl_lines_done; + uint32_t dl_events_in_line = 64 * 7; + uint32_t trg_line = ~0, trg_event = ~0; - /* Get the current position. */ - sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc); + dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line)); + if (!dram_line) + return FALSE; - numchunks = (devc->state.stoppos + 511) / 512; + sr_info("Downloading sample data."); - if (devc->state.state == SIGMA_IDLE) - return TRUE; + /* Stop acquisition. */ + sigma_set_register(WRITE_MODE, 0x11, devc); - if (devc->state.state == SIGMA_CAPTURE) { - /* Check if the timer has expired, or memory is full. */ - gettimeofday(&tv, 0); - running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 + - (tv.tv_usec - devc->start_tv.tv_usec) / 1000; + /* Set SDRAM Read Enable. */ + sigma_set_register(WRITE_MODE, 0x02, devc); - if (running_msec < devc->limit_msec && numchunks < 32767) - return TRUE; /* While capturing... */ - else - dev_acquisition_stop(sdi, sdi); + /* Get the current position. */ + sigma_read_pos(&stoppos, &triggerpos, devc); + /* Check if trigger has fired. */ + modestatus = sigma_get_register(READ_MODE, devc); + if (modestatus & 0x20) { + trg_line = triggerpos >> 9; + trg_event = triggerpos & 0x1ff; } - if (devc->state.state == SIGMA_DOWNLOAD) { - if (devc->state.chunks_downloaded >= numchunks) { - /* End of samples. */ - packet.type = SR_DF_END; - sr_session_send(devc->cb_data, &packet); - - devc->state.state = SIGMA_IDLE; - - return TRUE; - } + /* + * Determine how many 1024b "DRAM lines" do we need to read from the + * Sigma so we have a complete set of samples. Note that the last + * line can be only partial, containing less than 64 clusters. + */ + dl_lines_total = (stoppos >> 9) + 1; - newchunks = MIN(chunks_per_read, - numchunks - devc->state.chunks_downloaded); + dl_lines_done = 0; - sr_info("Downloading sample data: %.0f %%.", - 100.0 * devc->state.chunks_downloaded / numchunks); + while (dl_lines_total > dl_lines_done) { + /* We can download only up-to 32 DRAM lines in one go! */ + dl_lines_curr = MIN(chunks_per_read, dl_lines_total); - bufsz = sigma_read_dram(devc->state.chunks_downloaded, - newchunks, buf, devc); + bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr, + (uint8_t *)dram_line, devc); /* TODO: Check bufsz. For now, just avoid compiler warnings. */ (void)bufsz; - /* Find first ts. */ - if (devc->state.chunks_downloaded == 0) { - devc->state.lastts = RL16(buf) - 1; + /* This is the first DRAM line, so find the initial timestamp. */ + if (dl_lines_done == 0) { + devc->state.lastts = + sigma_dram_cluster_ts(&dram_line[0].cluster[0]); devc->state.lastsample = 0; } - /* Decode chunks and send them to sigrok. */ - for (i = 0; i < newchunks; ++i) { - int limit_chunk = 0; + for (i = 0; i < dl_lines_curr; i++) { + uint32_t trigger_event = ~0; + /* The last "DRAM line" can be only partially full. */ + if (dl_lines_done + i == dl_lines_total - 1) + dl_events_in_line = stoppos & 0x1ff; - /* The last chunk may potentially be only in part. */ - if (devc->state.chunks_downloaded == numchunks - 1) { - /* Find the last valid timestamp */ - limit_chunk = devc->state.stoppos % 512 + devc->state.lastts; - } + /* Test if the trigger happened on this line. */ + if (dl_lines_done + i == trg_line) + trigger_event = trg_event; - if (devc->state.chunks_downloaded + i == devc->state.triggerchunk) - decode_chunk_ts(buf + (i * CHUNK_SIZE), - &devc->state.lastts, - &devc->state.lastsample, - devc->state.triggerpos & 0x1ff, - limit_chunk, sdi); - else - decode_chunk_ts(buf + (i * CHUNK_SIZE), - &devc->state.lastts, - &devc->state.lastsample, - -1, limit_chunk, sdi); - - ++devc->state.chunks_downloaded; + decode_chunk_ts(dram_line + i, dl_events_in_line, + trigger_event, sdi); } + + dl_lines_done += dl_lines_curr; } + /* All done. */ + packet.type = SR_DF_END; + sr_session_send(sdi, &packet); + + dev_acquisition_stop(sdi, sdi); + + g_free(dram_line); + + return TRUE; +} + +/* + * Handle the Sigma when in CAPTURE mode. This function checks: + * - Sampling time ended + * - DRAM capacity overflow + * This function triggers download of the samples from Sigma + * in case either of the above conditions is true. + */ +static int sigma_capture_mode(struct sr_dev_inst *sdi) +{ + struct dev_context *devc = sdi->priv; + + uint64_t running_msec; + struct timeval tv; + + uint32_t stoppos, triggerpos; + + /* Check if the selected sampling duration passed. */ + gettimeofday(&tv, 0); + running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 + + (tv.tv_usec - devc->start_tv.tv_usec) / 1000; + if (running_msec >= devc->limit_msec) + return download_capture(sdi); + + /* Get the position in DRAM to which the FPGA is writing now. */ + sigma_read_pos(&stoppos, &triggerpos, devc); + /* Test if DRAM is full and if so, download the data. */ + if ((stoppos >> 9) == 32767) + return download_capture(sdi); + + return TRUE; +} + +static int receive_data(int fd, int revents, void *cb_data) +{ + struct sr_dev_inst *sdi; + struct dev_context *devc; + + (void)fd; + (void)revents; + + sdi = cb_data; + devc = sdi->priv; + + if (devc->state.state == SIGMA_IDLE) + return TRUE; + + if (devc->state.state == SIGMA_CAPTURE) + return sigma_capture_mode(sdi); + return TRUE; } @@ -1265,8 +1423,8 @@ static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) devc = sdi->priv; - if (configure_channels(sdi) != SR_OK) { - sr_err("Failed to configure channels."); + if (convert_trigger(sdi) != SR_OK) { + sr_err("Failed to configure triggers."); return SR_ERR; } @@ -1351,10 +1509,10 @@ static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) devc->cb_data = cb_data; /* Send header packet to the session bus. */ - std_session_send_df_header(cb_data, LOG_PREFIX); + std_session_send_df_header(sdi, LOG_PREFIX); /* Add capture source. */ - sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi); + sr_session_source_add(sdi->session, 0, G_IO_IN, 10, receive_data, (void *)sdi); devc->state.state = SIGMA_CAPTURE; @@ -1364,36 +1522,13 @@ static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; - uint8_t modestatus; (void)cb_data; - sr_source_remove(0); - - if (!(devc = sdi->priv)) { - sr_err("%s: sdi->priv was NULL", __func__); - return SR_ERR_BUG; - } - - /* Stop acquisition. */ - sigma_set_register(WRITE_MODE, 0x11, devc); - - /* Set SDRAM Read Enable. */ - sigma_set_register(WRITE_MODE, 0x02, devc); - - /* Get the current position. */ - sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc); - - /* Check if trigger has fired. */ - modestatus = sigma_get_register(READ_MODE, devc); - if (modestatus & 0x20) - devc->state.triggerchunk = devc->state.triggerpos / 512; - else - devc->state.triggerchunk = -1; - - devc->state.chunks_downloaded = 0; + devc = sdi->priv; + devc->state.state = SIGMA_IDLE; - devc->state.state = SIGMA_DOWNLOAD; + sr_session_source_remove(sdi->session, 0); return SR_OK; }