X-Git-Url: http://sigrok.org/gitweb/?a=blobdiff_plain;f=gpif-acquisition.c;h=7d3dcb6d59d8c1c69048ce7b3efbca98d80e5d21;hb=HEAD;hp=4626b5969c7cca57d5c8be279a33ea7852c9463b;hpb=41e02f6589989a2ef0c1d3c2be4317a662f393be;p=sigrok-firmware-fx2lafw.git diff --git a/gpif-acquisition.c b/gpif-acquisition.c index 4626b596..c6ba52a0 100644 --- a/gpif-acquisition.c +++ b/gpif-acquisition.c @@ -15,8 +15,7 @@ * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * along with this program; if not, see . */ #include @@ -27,7 +26,7 @@ #include #include -__bit gpif_acquiring; +enum gpif_status gpif_acquiring = STOPPED; static void gpif_reset_waveforms(void) { @@ -46,10 +45,7 @@ static void gpif_setup_registers(void) /* TODO. Value probably irrelevant, as we don't use RDY* signals? */ GPIFREADYCFG = 0; - /* - * Set TRICTL = 0, thus CTL0-CTL5 are CMOS outputs. - * TODO: Probably irrelevant, as we don't use CTL0-CTL5? - */ + /* Set TRICTL = 0, thus CTL0-CTL5 are CMOS outputs. */ GPIFCTLCFG = 0; /* When GPIF is idle, tri-state the data bus. */ @@ -66,7 +62,7 @@ static void gpif_setup_registers(void) * GPIFWFSELECT: [7:6] = SINGLEWR index, [5:4] = SINGLERD index, * [3:2] = FIFOWR index, [1:0] = FIFORD index */ - GPIFWFSELECT = (0x3 << 6) | (0x2 << 4) | (0x1 << 2) | (0x0 << 0); + GPIFWFSELECT = (0x3u << 6) | (0x2u << 4) | (0x1u << 2) | (0x0u << 0); /* Contains RDY* pin values. Read-only according to TRM. */ GPIFREADYSTAT = 0; @@ -129,7 +125,7 @@ void gpif_init_la(void) gpif_init_flowstates(); /* Reset the status. */ - gpif_acquiring = FALSE; + gpif_acquiring = STOPPED; } static void gpif_make_delay_state(volatile BYTE *pSTATE, uint8_t delay, uint8_t output) @@ -159,13 +155,13 @@ static void gpif_make_delay_state(volatile BYTE *pSTATE, uint8_t delay, uint8_t pSTATE[24] = 0x00; } -static void gpid_make_data_dp_state(volatile BYTE *pSTATE) +static void gpif_make_data_dp_state(volatile BYTE *pSTATE) { /* * BRANCH * Branch to IDLE if condition is true, back to S0 otherwise. */ - pSTATE[0] = (7 << 3) | (0 << 0); + pSTATE[0] = (1u << 7) | (7u << 3) | (0u << 0); /* * OPCODE @@ -187,7 +183,7 @@ static void gpid_make_data_dp_state(volatile BYTE *pSTATE) pSTATE[24] = (6 << 3) | (6 << 0); } -bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd) +bool gpif_acquisition_prepare(const struct cmd_start_acquisition *cmd) { int i; volatile BYTE *pSTATE = &GPIF_WAVE_DATA; @@ -196,11 +192,10 @@ bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd) while (!(GPIFTRIG & 0x80)); /* Configure the EP2 FIFO. */ - if (cmd->flags & CMD_START_FLAGS_SAMPLE_16BIT) { + if (cmd->flags & CMD_START_FLAGS_SAMPLE_16BIT) EP2FIFOCFG = bmAUTOIN | bmWORDWIDE; - } else { + else EP2FIFOCFG = bmAUTOIN; - } SYNCDELAY(); /* Set IFCONFIG to the correct clock source. */ @@ -212,26 +207,26 @@ bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd) bmGSTATE | bmIFGPIF; } - if (cmd->flags & CMD_START_FLAGS_CLK_CTL2) { - uint8_t delay_1, delay_2; + /* Populate delay states. */ + if (cmd->sample_delay_h >= 6) + return false; - /* We need a pulse where the CTL2 pin alternates states. */ - - /* Make the low pulse shorter then the high pulse. */ - delay_2 = cmd->sample_delay_l >> 2; - /* Work around >12MHz case resulting in a 0 delay low pulse. */ - if (delay_2 == 0) - delay_2 = 1; - delay_1 = cmd->sample_delay_l - delay_2; - - gpif_make_delay_state(pSTATE++, delay_2, 0x40); - gpif_make_delay_state(pSTATE++, delay_1, 0x46); + if (cmd->flags & CMD_START_FLAGS_CLK_CTL2) { + uint8_t delay_1, delay_2 = cmd->sample_delay_l; + + /* We need a pulse where the CTL1/2 pins alternate states. */ + if (cmd->sample_delay_h) { + for (i = 0; i < cmd->sample_delay_h; i++) + gpif_make_delay_state(pSTATE++, 0, 0x06); + } else { + delay_1 = delay_2 / 2; + delay_2 -= delay_1; + gpif_make_delay_state(pSTATE++, delay_1, 0x06); + } + + /* sample_delay_l is always != 0 for the supported rates. */ + gpif_make_delay_state(pSTATE++, delay_2, 0x00); } else { - /* Populate delay states. */ - if ((cmd->sample_delay_h == 0 && cmd->sample_delay_l == 0) || - cmd->sample_delay_h >= 6) - return false; - for (i = 0; i < cmd->sample_delay_h; i++) gpif_make_delay_state(pSTATE++, 0, 0x00); @@ -240,8 +235,16 @@ bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd) } /* Populate S1 - the decision point. */ - gpid_make_data_dp_state(pSTATE++); + gpif_make_data_dp_state(pSTATE++); + /* Update the status. */ + gpif_acquiring = PREPARED; + + return true; +} + +void gpif_acquisition_start(void) +{ /* Execute the whole GPIF waveform once. */ gpif_set_tc16(1); @@ -249,15 +252,13 @@ bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd) gpif_fifo_read(GPIF_EP2); /* Update the status. */ - gpif_acquiring = TRUE; - - return true; + gpif_acquiring = RUNNING; } void gpif_poll(void) { /* Detect if acquisition has completed. */ - if (gpif_acquiring && (GPIFTRIG & 0x80)) { + if ((gpif_acquiring == RUNNING) && (GPIFTRIG & 0x80)) { /* Activate NAK-ALL to avoid race conditions. */ FIFORESET = 0x80; SYNCDELAY(); @@ -278,6 +279,6 @@ void gpif_poll(void) FIFORESET = 0x00; SYNCDELAY(); - gpif_acquiring = FALSE; + gpif_acquiring = STOPPED; } }