X-Git-Url: http://sigrok.org/gitweb/?a=blobdiff_plain;f=gpif-acquisition.c;h=39e62e582deb997939dd652cdf1763ce76dc4b14;hb=a123aff72dcd98bdb3a0e3b2cdf3964b49a20186;hp=89ef85d4ae38fe7ec006b03078b8d219bdf5d087;hpb=1e588d0627db7ba16458be72aba6961747b6a4d6;p=sigrok-firmware-fx2lafw.git diff --git a/gpif-acquisition.c b/gpif-acquisition.c index 89ef85d4..39e62e58 100644 --- a/gpif-acquisition.c +++ b/gpif-acquisition.c @@ -19,14 +19,16 @@ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ +#include #include #include #include #include - #include #include +__bit gpif_acquiring; + static void gpif_reset_waveforms(void) { int i; @@ -69,7 +71,7 @@ static void gpif_setup_registers(void) /* Contains RDY* pin values. Read-only according to TRM. */ GPIFREADYSTAT = 0; - /* Make GPIF stop on transcation count not flag */ + /* Make GPIF stop on transaction count not flag. */ EP2GPIFPFSTOP = (0 << 0); } @@ -125,74 +127,142 @@ void gpif_init_la(void) /* Initialize flowstate registers (not used by us). */ gpif_init_flowstates(); + + /* Reset the status. */ + gpif_acquiring = FALSE; } -void gpif_acquisition_start(const struct cmd_start_acquisition *cmd) +static void gpif_make_delay_state(volatile BYTE *pSTATE, uint8_t delay) { - xdata volatile BYTE *pSTATE; - - /* Ensure GPIF is idle before reconfiguration */ - while(!(GPIFTRIG & 0x80)); - - /* Set IFCONFIG to the correct clock source */ - if(cmd->flags & CMD_START_FLAGS_CLK_48MHZ) { - IFCONFIG = bmIFCLKSRC | - bm3048MHZ | - bmIFCLKOE | - bmASYNC | - bmGSTATE | - bmIFGPIF; - } else { - IFCONFIG = bmIFCLKSRC | - bmIFCLKOE | - bmASYNC | - bmGSTATE | - bmIFGPIF; - } - - /* GPIF terminology: DP = decision point, NDP = non-decision-point */ + /* + * DELAY + * Delay cmd->sample_delay clocks. + */ + pSTATE[0] = delay; - /* Populate WAVEDATA - * - * This is the basic algorithm implemented in our GPIF state machine: - * - * State 0: NDP: Sample the FIFO data bus. - * State 1: DP: If EP2 is full, go to state 7 (the IDLE state), i.e., - * end the current waveform. Otherwise, go to state 0 again, - * i.e., sample data until EP2 is full. - * State 2: Unused. - * State 3: Unused. - * State 4: Unused. - * State 5: Unused. - * State 6: Unused. + /* + * OPCODE + * SGL=0, GIN=0, INCAD=0, NEXT=0, DATA=0, DP=0 + * Collect data in this state. */ + pSTATE[8] = 0x00; - /* Populate S0 */ - pSTATE = &GPIF_WAVE_DATA; - pSTATE[0] = cmd->sample_delay; - pSTATE[8] = 0x02; + /* + * OUTPUT + * OE[0:3]=0, CTL[0:3]=0 + */ pSTATE[16] = 0x00; + + /* + * LOGIC FUNCTION + * Not used. + */ pSTATE[24] = 0x00; +} - /* Populate S1 */ - pSTATE = &GPIF_WAVE_DATA + 1; - pSTATE[0] = 0x00; - pSTATE[8] = 0x01; - pSTATE[16] = 0x00; - pSTATE[24] = 0x36; +static void gpid_make_data_dp_state(volatile BYTE *pSTATE) +{ + /* + * BRANCH + * Branch to IDLE if condition is true, back to S0 otherwise. + */ + pSTATE[0] = (7 << 3) | (0 << 0); - /* Populate Reserved Words */ - pSTATE = &GPIF_WAVE_DATA + 7; - pSTATE[0] = 0x07; - pSTATE[8] = 0x00; + /* + * OPCODE + * SGL=0, GIN=0, INCAD=0, NEXT=0, DATA=1, DP=1 + */ + pSTATE[8] = (1 << 1) | (1 << 0); + + /* + * OUTPUT + * OE[0:3]=0, CTL[0:3]=0 + */ pSTATE[16] = 0x00; - pSTATE[24] = 0x3f; + /* + * LOGIC FUNCTION + * Evaluate if the FIFO full flag is set. + * LFUNC=0 (AND), TERMA=6 (FIFO Flag), TERMB=6 (FIFO Flag) + */ + pSTATE[24] = (6 << 3) | (6 << 0); +} + +bool gpif_acquisition_start(const struct cmd_start_acquisition *cmd) +{ + int i; + volatile BYTE *pSTATE = &GPIF_WAVE_DATA; + + /* Ensure GPIF is idle before reconfiguration. */ + while (!(GPIFTRIG & 0x80)); + + /* Configure the EP2 FIFO. */ + if (cmd->flags & CMD_START_FLAGS_SAMPLE_16BIT) { + EP2FIFOCFG = bmAUTOIN | bmWORDWIDE; + } else { + EP2FIFOCFG = bmAUTOIN; + } SYNCDELAY(); - /* Execute the whole GPIF waveform once */ + /* Set IFCONFIG to the correct clock source. */ + if (cmd->flags & CMD_START_FLAGS_CLK_48MHZ) { + IFCONFIG = bmIFCLKSRC | bm3048MHZ | bmIFCLKOE | bmASYNC | + bmGSTATE | bmIFGPIF; + } else { + IFCONFIG = bmIFCLKSRC | bmIFCLKOE | bmASYNC | + bmGSTATE | bmIFGPIF; + } + + /* Populate delay states. */ + if ((cmd->sample_delay_h == 0 && cmd->sample_delay_l == 0) || + cmd->sample_delay_h >= 6) + return false; + + for (i = 0; i < cmd->sample_delay_h; i++) + gpif_make_delay_state(pSTATE++, 0); + + if (cmd->sample_delay_l != 0) + gpif_make_delay_state(pSTATE++, cmd->sample_delay_l); + + /* Populate S1 - the decision point. */ + gpid_make_data_dp_state(pSTATE++); + + /* Execute the whole GPIF waveform once. */ gpif_set_tc16(1); /* Perform the initial GPIF read. */ gpif_fifo_read(GPIF_EP2); + + /* Update the status. */ + gpif_acquiring = TRUE; + + return true; +} + +void gpif_poll(void) +{ + /* Detect if acquisition has completed. */ + if (gpif_acquiring && (GPIFTRIG & 0x80)) { + /* Activate NAK-ALL to avoid race conditions. */ + FIFORESET = 0x80; + SYNCDELAY(); + + /* Switch to manual mode. */ + EP2FIFOCFG = 0; + SYNCDELAY(); + + /* Reset EP2. */ + FIFORESET = 0x02; + SYNCDELAY(); + + /* Return to auto mode. */ + EP2FIFOCFG = bmAUTOIN; + SYNCDELAY(); + + /* Release NAK-ALL. */ + FIFORESET = 0x00; + SYNCDELAY(); + + gpif_acquiring = FALSE; + } }